Abstract

We have assembled a single-frequency imaging system at 3.4 THz with a quantum-cascade laser. Images of electronic and biological applications are demonstrated. We operate the laser with a peak output power of 2.5 mW at a 7% duty cycle and a 22 K operating temperature. The minimum spot size is 340 μm. The signal is detected with a single-element deuterated triglycine sulfate detector, and images are captured by scanning of the sample.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1690 (1990).
    [CrossRef]
  2. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
    [CrossRef]
  3. B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  4. I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
    [CrossRef]
  5. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
    [CrossRef]
  6. S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
    [CrossRef]
  7. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
    [CrossRef]
  8. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
    [CrossRef]
  9. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
    [CrossRef]
  10. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
    [CrossRef]
  11. L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
    [CrossRef]
  12. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
    [CrossRef]
  13. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
    [CrossRef]
  14. L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
    [CrossRef]

2004 (4)

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

2003 (2)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

2002 (5)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

1997 (1)

S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[CrossRef]

1996 (1)

D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

1990 (1)

M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1690 (1990).
[CrossRef]

Ajili, L.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Baker, C.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Beck, M.

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Beere, H.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Beere, H. E.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Beltram, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Bradley, I. V.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Brown, E. R.

S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[CrossRef]

Bründermann, E.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

Cole, B. E.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Davies, A. G.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Davies, G.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Evans, M. J.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Faist, J.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Ferguson, B.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Gregory, I. S.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Grischkowsky, D. R.

M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1690 (1990).
[CrossRef]

Havenith, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Hoffmann, S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Hofmann, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Hofstetter, D.

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Hu, Q.

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

Iotti, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Kira, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Koch, S. W.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Kohler, R.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Kumar, S.

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

Linfield, E.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Linfield, E. H.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Matus, M.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

McIntosh, K. A.

S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[CrossRef]

Missous, M.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Moloney, J. V.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Moskalenko, A. S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

Reno, J. L.

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

Ritchie, D.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Ritchie, D. A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Rochat, M.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Saito, S.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Sakai, K.

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

Scalari, G.

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

Tredicucci, A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Tribe, W. R.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

van Exter, M.

M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1690 (1990).
[CrossRef]

Verghese, S.

S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[CrossRef]

Willenberg, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Williams, B. S.

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

Zhang, X. C.

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Appl. Phys. Lett. (7)

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser operating up to 137 K,” Appl. Phys. Lett. 83, 5142–5144 (2003).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far-infrared (λ = 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

L. Ajili, G. Scalari, J. Faist, H. Beere, D. Ritchie, E. Linfield, G. Davies, “High power quantum cascade lasers operating at 87 μm and 130 μm,” Appl. Phys. Lett. 85, 3986–3988 (2004).
[CrossRef]

S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84, 3585–3587 (2004).
[CrossRef]

S. Verghese, K. A. McIntosh, E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71, 2743–2745 (1997).
[CrossRef]

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Low-threshold terahertz quantum cascade lasers,” Appl. Phys. Lett. 81, 1381–1383 (2002).
[CrossRef]

Electron. Lett. (3)

L. Ajili, G. Scalari, D. Hofstetter, M. Beck, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie, “Continuous-wave operation of far-infrared quantum cascade lasers,” Electron. Lett. 38, 1675–1676 (2002).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, “Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ = 141 μm),” Electron. Lett. 40, 431–433 (2004).
[CrossRef]

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–144 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1690 (1990).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Nature (London) (1)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature (London) 417, 156–159 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of a custom cold finger used to mount quantum-cascade lasers. The laser output facet is denoted by the white arrow. The THz output is deflected by a 45-deg mirror (not shown) and then collimated by a 25-mm focal-length off-axis parabolic lens.

Fig. 2
Fig. 2

FWHM of the Gaussian fit to razor blade edge data. Filled diamonds, blade moving in the y (vertical) direction; open squares, blade moving in the x (horizontal) direction.

Fig. 3
Fig. 3

Laser signal on the DTGS detector through successive layers of white paper (open squares) and polyimide (filled diamonds). Least-squares linear fits to the data giving the absorption coefficients are labeled next to the lines.

Fig. 4
Fig. 4

Image acquired with a 3.4-THz quantum-cascade laser system of the watermark on a U.S. five-dollar bill. Inset: optical scan of the bill. The area in the THz image is outlined in black.

Fig. 5
Fig. 5

Image acquired with a 3.4-THz quantum-cascade laser system of spots of the protein BSA evaporated on a piece of polyimide. The protein spots form an Agilent logo. Variations in the thickness of the protein through the spots are clearly observed.

Fig. 6
Fig. 6

Image acquired with a 3.4-THz quantum-cascade laser system of spots of a leaf from an abutilon plant. Absorption from water in the veins of the leaf can be clearly observed.

Fig. 7
Fig. 7

Image of a flex circuit acquired with a 3.4-THz quantum-cascade laser system. (a) Image point spacing, 333 μm; image size, 22 mm × 37 mm. (b) Image point spacing, 100 μm; image size, 10 mm × 10 mm. The area imaged in (b) is outlined in (a).

Metrics