Abstract

Global positioning system- (GPS-) referenced optical frequency combs based on mode-locked lasers offer calibrations for length metrology traceable to international length standards through the SI second and the speed of light. The absolute frequency of an iodine-stabilized He–Ne laser [127I2 R(127) 11–5 f component] was measured with a femtosecond comb referenced to a multichannel GPS timing receiver. The expected performance and limitations of GPS-referenced comb measurements are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Levine, “Time and frequency distribution using satellites,” Rep. Prog. Phys. 65, 1119–1164 (2002).
    [CrossRef]
  2. M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).
  3. Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
    [CrossRef]
  4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  5. J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
    [CrossRef]
  6. S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
    [CrossRef]
  7. L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
    [CrossRef]
  8. R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
    [CrossRef]
  9. G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
    [CrossRef] [PubMed]
  10. P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
    [CrossRef]
  11. Winters Electro-Optics Inc. Model 100.
  12. Symmetricom XLI.
  13. J. A. Davis, J. M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK National Time Scale UTC(NPL),” (National Physical Laboratory, Teddington, Middlesex, UK, 1997).
  14. UTC–GPS time is monitored in Paris and disseminated monthly through the BIPM Circular T.
  15. http://www.boulder.nist.gov/timefreq/service/gpstrace.htm .
  16. The NIST archive GPS receiver is a Motorola Oncore unit.
  17. C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
    [CrossRef]
  18. A. Bartels, H. Kurtz, “Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,” Opt. Lett. 27, 1839–1841 (2002).
    [CrossRef]
  19. S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
    [CrossRef]
  20. J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
    [CrossRef]
  21. T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
    [CrossRef]
  22. S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
    [CrossRef]
  23. L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
    [CrossRef]
  24. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
    [CrossRef]

2004 (1)

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

2003 (6)

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

2002 (5)

J. Levine, “Time and frequency distribution using satellites,” Rep. Prog. Phys. 65, 1119–1164 (2002).
[CrossRef]

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
[CrossRef]

A. Bartels, H. Kurtz, “Generation of a broadband continuum by a Ti:sapphire femtosecond oscillator with a 1-GHz repetition rate,” Opt. Lett. 27, 1839–1841 (2002).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

2001 (3)

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
[CrossRef]

Bagayev, S. N.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Bartels, A.

Barwood, G. P.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Bergquist, J. C.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Bize, S.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

Cancio, P.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Cancio Pastor, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Chartier, J.-M.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Costanzo, G.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Curtis, E. A.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Davis, J. A.

J. A. Davis, J. M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK National Time Scale UTC(NPL),” (National Physical Laboratory, Teddington, Middlesex, UK, 1997).

De Marchi, A.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

de Mauro, C.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

De Natale, P.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Diddams, S. A.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Drullinger, R.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Drullinger, R. E.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Ferrari, G.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Furlong, J. M.

J. A. Davis, J. M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK National Time Scale UTC(NPL),” (National Physical Laboratory, Teddington, Middlesex, UK, 1997).

Gill, P.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Giusfredi, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Greenhall, C. A.

C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
[CrossRef]

Hagel, G.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Hall, J. L.

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Heavner, T. P.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Hollberg, L.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

T. M. Ramond, S. A. Diddams, L. Hollberg, A. Bartels, “Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842–1844 (2002).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Holzwarth, R.

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Howe, D. A.

C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
[CrossRef]

Huang, G.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Inguscio, M.

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

Itano, W. M.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Ivanov, E. N.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Jefferts, S. R.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Knight, J. C.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Kurtz, H.

Lea, S. N.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Lee, W. D.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Levi, F.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Levine, J.

J. Levine, “Time and frequency distribution using satellites,” Rep. Prog. Phys. 65, 1119–1164 (2002).
[CrossRef]

Lombardi, M. A.

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

Ma, L.-S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

Margolis, H. S.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Meekhof, D. M.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Nelson, C.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Nelson, L. M.

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

Novick, A. N.

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

Oates, C. W.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Oskay, W. H.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

Parker, T. E.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Percival, D. B.

C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
[CrossRef]

Picard, S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

Poli, N.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Prevedelli, M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Quinn, T. J.

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

Rafac, R. J.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Ramond, T. M.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Reichert, J.

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Robertsson, L.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

Robinson, H. G.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Rowley, W. R. C.

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

Russell, J.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Shirley, J.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Skvortsov, M. N.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

St, P.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Tanaka, U.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

Tanner, C. E.

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

Tino, G. M.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Toninelli, C.

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Von Zanthier, J.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Walls, F. L.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Walther, H.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Windeler, R. S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Wineland, D. J.

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

Ye, J.

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

Yu Nevsky, A.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Zhang, V. S.

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

Zimmermann, M.

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Zucco, M.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

Appl. Phys. B (1)

R. Holzwarth, A. Yu Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. Von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St, J. Russell, M. N. Skvortsov, S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B 73, 269–271 (2001).
[CrossRef]

Cal. Lab. Int. J. Metrol. (Sept.) (1)

M. A. Lombardi, L. M. Nelson, A. N. Novick, V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrol. (Sept.)26–33 (2001).

IEEE J. Quantum Electron. (1)

L. Hollberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, Th. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, D. J. Wineland, “Optical frequency standards and measurements,” IEEE J. Quantum Electron. 37, 1502–1513 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, R. S. Windeler, “A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements,” IEEE J. Sel. Top. Quantum Electron. 9, 1066–1071 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. A. Greenhall, D. A. Howe, D. B. Percival, “Total variance, an estimator of long-term frequency stability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1183–1191 (1999).
[CrossRef]

Metrologia (3)

S. N. Lea, W. R. C. Rowley, H. S. Margolis, G. P. Barwood, G. Huang, P. Gill, J.-M. Chartier, R. S. Windeler, “Absolute frequency measurements of 633 nm iodine-stabilized helium-neon lasers,” Metrologia 40, 84–88 (2003).
[CrossRef]

T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003).
[CrossRef]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Nature (London) (1)

Th. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature (London) 416, 233–237 (2002).
[CrossRef]

Opt. Commun. (1)

J. Reichert, R. Holzwarth, Th. Udem, T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (4)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef] [PubMed]

G. Ferrari, P. Cancio, R. Drullinger, G. Giusfredi, N. Poli, M. Prevedelli, C. Toninelli, G. M. Tino, “Precision frequency measurement of visible intercombination lines of strontium,” Phys. Rev. Lett. 91, 243002 (2003).
[CrossRef] [PubMed]

P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, “Absolute frequency measurements of the 23S1→23P0,1,2atomic helium transitions around 1083 nm,” Phys. Rev. Lett. 92, 023001 (2004).
[CrossRef]

S. Bize, S. A. Diddams, U. Tanaka, C. E. Tanner, W. H. Oskay, R. E. Drullinger, T. E. Parker, T. P. Heavner, S. R. Jefferts, L. Hollberg, W. M. Itano, J. C. Bergquist, “Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock,” Phys. Rev. Lett. 90, 150802 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

J. Levine, “Time and frequency distribution using satellites,” Rep. Prog. Phys. 65, 1119–1164 (2002).
[CrossRef]

Other (6)

Winters Electro-Optics Inc. Model 100.

Symmetricom XLI.

J. A. Davis, J. M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK National Time Scale UTC(NPL),” (National Physical Laboratory, Teddington, Middlesex, UK, 1997).

UTC–GPS time is monitored in Paris and disseminated monthly through the BIPM Circular T.

http://www.boulder.nist.gov/timefreq/service/gpstrace.htm .

The NIST archive GPS receiver is a Motorola Oncore unit.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

GPS–UTC time monitoring data for the 30-day period ending at the modified Julian date 52,965.0, or 5 p.m. Mountain Standard Time 21 November 2003. The data are 10-min averages obtained from all the GPS satellites in view from Boulder, Colorado, by use of a typical GPS timing receiver.16 A diurnal fluctuation (a period of 144 data points) is clearly evident. These data were retrieved from the NIST GPS data archive available on the Internet.15

Fig. 2
Fig. 2

Frequency stability of the received GPS as calculated from the Fig. 1 data by the overlapping Allan variance routine.

Fig. 3
Fig. 3

Frequency stability of the local oscillator that we calculated from the Fig. 1 data by differentiating and dividing by the time interval between data points. The features near modified Julian date 52,942 are associated with a period of intense solar activity in October 2003. The diurnal fluctuation evident in Fig. 1 is buried in the noise. A portion of this data during a normal period near modified Julian date 52,956 is shown in Fig. 4.

Fig. 4
Fig. 4

Ten-hour portion of the Fig. 3 frequency stability data is shown by the filled circles. The open squares are the result of averaging each 10-min data point with the two adjoining neighbors. The curve is therefore an indication of the oscillator’s typical frequency stability when averaging for approximately 1800 s (30 min).

Fig. 5
Fig. 5

Allan deviation at 1200 s calculated from the NIST GPS archive data for each day from 2 September 2003 until 18 January 2004. The peak of this plot, on 29 October 2003, corresponds to a period of unusually intense solar activity.

Fig. 6
Fig. 6

Measurement system diagram. The comb repetition rate could be referenced to either the GPS receiver or the maser as required. The offset frequency f0 synthesizer requires no reference since the output is not multiplied by the large factor n. BP, bandpass filter.

Fig. 7
Fig. 7

He–Ne and comb photocurrent beat notes after filtering and amplification, with a 300-kHz resolution bandwidth. The top trace shows a single analyzer sweep of 4-ms duration; the bottom trace is a 100-ms sweep time. The width of the bottom envelope is due to both the He–Ne modulation and the comb jitter.

Fig. 8
Fig. 8

Summary of the I2 R(127) 11 − 5 f component frequency measurements. The first two measurements were prior to an optimization of the laser cavity alignment. We increased the laser power between data sets labeled 4 Nov. and 5 Nov. by rotating the iodine cell.

Fig. 9
Fig. 9

Counter frequency measurements with 1-s gate times. Data set 1 consisted of two measurements, the comb minus the He–Ne beat note with the comb referenced first to the maser (upper trace) and subsequently referenced to the GPS signal (lower trace). The lower trace is offset by −200 kHz on the graph for clarity.

Fig. 10
Fig. 10

Filled squares, the Allan deviation of the He–Ne and comb beat note with the comb referenced to the H2 maser, indicating the intrinsic stability of the I2 He–Ne laser. Filled circles and triangles, also the He–Ne and comb beat note, but the comb is referenced to the GPS timing receiver signal. The laser optical alignment was adjusted prior to the data labeled 4 Nov. The laser power was increased to 14.8-mW intracavity prior to the data labeled 5 Nov., indicated with filled circles.

Fig. 11
Fig. 11

He–Ne and GPS-referenced comb beat frequency (bottom trace, left axis) and simultaneously the beat between a synthesizer (f ~ 998 MHz) referenced to the GPS and a second synthesizer referenced to a maser (top trace, right axis). The data points are 1-s gate-time counts over approximately 14 h. The Y-axis scales are adjusted such that Δffull scale/v0 are identical. Both data sets exhibit the same Allan deviation for times longer than 20 s. The slightly higher noise level of the He–Ne and comb data corresponds to a slight increase in the Allan deviation at averaging times less than 20 s relative to the GPS-driven Rb oscillator. The obvious correlation of the two time series indicates that in the long term the frequency stability of the GPS is the common limiting factor.

Tables (1)

Tables Icon

Table 1 Summary of Optical Frequency Measurements, v = vR + 473.612353 THz 127I2R(127) 11–5 f

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f n = ± f 0 + n f REP ,
f He - Ne = ± f 0 + n f REP ± f B ,

Metrics