Abstract

We have developed a spectrogonio radiometer to measure in the laboratory (-35 °C to +30 °C) the bidirectional reflectance and polarization distribution functions of various types of planetary material from the UV to the near-IR (310–4800 nm). The major, to our knowledge, novel feature of this instrument is that it is capable of measuring dark to translucent materials with a high degree of radiometric accuracy under most viewing geometries. The sample surface is illuminated with a large monochromatic and polarized parallel beam (incidence: 0°–90°), and the total intensity and the two polarized components of the reflected light are measured (observation, 0°–80°; azimuth, 0°–180°). The scientific and technical constraints, the design, and the performances and limitations of the system are presented in this first paper.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
    [CrossRef]
  2. K. Stamnes, S. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  3. S. Douté, B. Schmitt, “A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths,” J. Geophys. Res. E 103, 31367–31389 (1998).
    [CrossRef]
  4. W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
    [CrossRef]
  5. B. J. Buratti, W. D. Smythe, R. M. Nelson, V. Gharakhani, “Spectrogoniometer for measuring planetary surface materials at small phase angles,” Appl. Opt. 27, 161–165 (1988).
    [CrossRef] [PubMed]
  6. R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
    [CrossRef]
  7. R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
    [CrossRef]
  8. S. Kaasalainen, J. Piironen, K. Muinonen, H. Karttunen, J. Peltoniemi, “Laboratory experiments on backscattering from regolith samples,” Appl. Opt. 41, 4416–4420 (2002).
    [CrossRef] [PubMed]
  9. C. M. Pieters, “Strength of mineral absorption features in the transmitted component of near-infrared light: first results from RELAB,” J. Geophys. Res. B 88, 9534–9544 (1983).
    [CrossRef]
  10. C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.
  11. S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
    [CrossRef]
  12. S. Sandmeier, K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
    [CrossRef]
  13. T. H. Painter, “The hyperspectral bidirectional reflectance of snow: modeling, measurement, and instrumentation,” Ph.D. thesis (University of California, Santa Barbara, California, 2002).
  14. G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
    [CrossRef]
  15. Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
    [CrossRef]
  16. A. Oehler, “Experimentelle und theoretische Untersuchung der goniospektrometrischen Eigenschaften regolithartiger Materialen in den Spektralbereichen UV, VIS, und NIR,” Ph.D. thesis (Institut für Planetenerkundung, Deutsche Forschungsanstalt für Luft- und Raumfahrt, Berlin, 1996).
  17. N. Bonnefoy, Laboratoire de Planétologie de Grenoble, Bâtiment D de Physique, B.P. 53, 38041 Grenoble Cedex 9, France, and B. Schmitt, O. Brissaud, S. Douté, are preparing a manuscript, “Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces. 2. Spectral and radiometric calibrations.”
  18. N. Bonnefoy, “Développement d’un spectro-goniomètre pour l’étude de la réflectance bidirectionnelle des surfaces géophysiques. Application au soufre et perspectives pour le satellite Io,” Ph.D. thesis (Laboratoire de Planétologie de Grenoble—Université Joseph Fourier, Grenoble, 2001).

2002 (1)

2000 (2)

W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

1999 (1)

S. Sandmeier, K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

1998 (3)

S. Douté, B. Schmitt, “A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths,” J. Geophys. Res. E 103, 31367–31389 (1998).
[CrossRef]

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

1988 (2)

1983 (1)

C. M. Pieters, “Strength of mineral absorption features in the transmitted component of near-infrared light: first results from RELAB,” J. Geophys. Res. B 88, 9534–9544 (1983).
[CrossRef]

Andreoli, G.

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Bodilis, M.

G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
[CrossRef]

Bonnefoy, N.

N. Bonnefoy, “Développement d’un spectro-goniomètre pour l’étude de la réflectance bidirectionnelle des surfaces géophysiques. Application au soufre et perspectives pour le satellite Io,” Ph.D. thesis (Laboratoire de Planétologie de Grenoble—Université Joseph Fourier, Grenoble, 2001).

Boucher, Y.

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

Briottet, X.

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
[CrossRef]

Buratti, B. J.

Cosnefroy, H.

G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
[CrossRef]

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

Douté, S.

W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
[CrossRef]

S. Douté, B. Schmitt, “A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths,” J. Geophys. Res. E 103, 31367–31389 (1998).
[CrossRef]

Gharakhani, V.

Grundy, W. M.

W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
[CrossRef]

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

Hapke, B. W.

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

Hill, J.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Horn, L. J.

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

Hosgood, B.

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Itten, K. I.

S. Sandmeier, K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

Jayaweera, K.

Kaasalainen, S.

Karttunen, H.

Koechler, C.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Mehl, W.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Muinonen, K.

Müller, C.

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

Nelson, R. M.

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

B. J. Buratti, W. D. Smythe, R. M. Nelson, V. Gharakhani, “Spectrogoniometer for measuring planetary surface materials at small phase angles,” Appl. Opt. 27, 161–165 (1988).
[CrossRef] [PubMed]

Oehler, A.

A. Oehler, “Experimentelle und theoretische Untersuchung der goniospektrometrischen Eigenschaften regolithartiger Materialen in den Spektralbereichen UV, VIS, und NIR,” Ph.D. thesis (Institut für Planetenerkundung, Deutsche Forschungsanstalt für Luft- und Raumfahrt, Berlin, 1996).

Painter, T. H.

T. H. Painter, “The hyperspectral bidirectional reflectance of snow: modeling, measurement, and instrumentation,” Ph.D. thesis (University of California, Santa Barbara, California, 2002).

Pegoraro, A.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Peltoniemi, J.

Petit, D.

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

Pieters, C. M.

C. M. Pieters, “Strength of mineral absorption features in the transmitted component of near-infrared light: first results from RELAB,” J. Geophys. Res. B 88, 9534–9544 (1983).
[CrossRef]

Piironen, J.

Roberts, D.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Sandmeier, S.

S. Sandmeier, K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

Schmitt, B.

W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
[CrossRef]

S. Douté, B. Schmitt, “A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths,” J. Geophys. Res. E 103, 31367–31389 (1998).
[CrossRef]

Schmuck, G.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Serrot, G.

G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
[CrossRef]

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

Smith, M.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Smythe, W. D.

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

B. J. Buratti, W. D. Smythe, R. M. Nelson, V. Gharakhani, “Spectrogoniometer for measuring planetary surface materials at small phase angles,” Appl. Opt. 27, 161–165 (1988).
[CrossRef] [PubMed]

Spilker, L. J.

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

Stamnes, K.

Tsay, S.

Verdebout, J.

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

Wiscombe, W.

Appl. Opt. (3)

Icarus (2)

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Horn, “Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge,” Icarus 131, 223–230 (1998).
[CrossRef]

R. M. Nelson, B. W. Hapke, W. D. Smythe, L. J. Spilker, “The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle,” Icarus 147, 545–558 (2000).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. Sandmeier, K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

J. Geophys. Res. B (1)

C. M. Pieters, “Strength of mineral absorption features in the transmitted component of near-infrared light: first results from RELAB,” J. Geophys. Res. B 88, 9534–9544 (1983).
[CrossRef]

J. Geophys. Res. E (2)

S. Douté, B. Schmitt, “A multilayer bidirectional reflectance model for the analysis of planetary surface hyperspectral images at visible and near-infrared wavelengths,” J. Geophys. Res. E 103, 31367–31389 (1998).
[CrossRef]

W. M. Grundy, S. Douté, B. Schmitt, “A Monte Carlo ray-tracing model for scattering and polarization by large particles with complex shapes,” J. Geophys. Res. E 105, 29291–29314 (2000).
[CrossRef]

Remote Sens. Environ. (1)

S. Sandmeier, C. Müller, B. Hosgood, G. Andreoli, “Sensitivity analysis and quality assessment of laboratory BRDF data,” Remote Sens. Environ. 64, 176–191 (1998).
[CrossRef]

Other (8)

C. Koechler, B. Hosgood, G. Andreoli, G. Schmuck, J. Verdebout, A. Pegoraro, J. Hill, W. Mehl, D. Roberts, M. Smith, “The European Optical Goniometric Facility: technical description and first experiments on spectral unmixing,” in Proceedings of International Geoscience and Remote Sensing Symposium, E. Njoku, J. Way, eds. (Institute of Electrical and Electronics Engineers, New York, 1994) pp. 2375–2377.

T. H. Painter, “The hyperspectral bidirectional reflectance of snow: modeling, measurement, and instrumentation,” Ph.D. thesis (University of California, Santa Barbara, California, 2002).

G. Serrot, M. Bodilis, X. Briottet, H. Cosnefroy, “Presentation of a new BRDF measurement device,” in Atmospheric Propagation, Adaptive Systems, and Lidar Techniques for Remote Sensing II, A. D. Devir, A. Kohle, U. Schreiber, C. Werner, eds., Proc. SPIE3494, 34–40 (1998).
[CrossRef]

Y. Boucher, H. Cosnefroy, D. Petit, G. Serrot, X. Briottet, “Comparison of measured and modeled BRDF of natural targets,” in Targets and Background: Characterization and Representation V, W. R. Watkins, D. Clement, W. R. Reynolds, eds., Proc. SPIE3699, 16–26 (1999).
[CrossRef]

A. Oehler, “Experimentelle und theoretische Untersuchung der goniospektrometrischen Eigenschaften regolithartiger Materialen in den Spektralbereichen UV, VIS, und NIR,” Ph.D. thesis (Institut für Planetenerkundung, Deutsche Forschungsanstalt für Luft- und Raumfahrt, Berlin, 1996).

N. Bonnefoy, Laboratoire de Planétologie de Grenoble, Bâtiment D de Physique, B.P. 53, 38041 Grenoble Cedex 9, France, and B. Schmitt, O. Brissaud, S. Douté, are preparing a manuscript, “Spectrogonio radiometer for the study of the bidirectional reflectance and polarization functions of planetary surfaces. 2. Spectral and radiometric calibrations.”

N. Bonnefoy, “Développement d’un spectro-goniomètre pour l’étude de la réflectance bidirectionnelle des surfaces géophysiques. Application au soufre et perspectives pour le satellite Io,” Ph.D. thesis (Laboratoire de Planétologie de Grenoble—Université Joseph Fourier, Grenoble, 2001).

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 3
Fig. 3

Schematic three-dimensional view of the spectrogonio radiometer.

Fig. 1
Fig. 1

Radiometric error relative to an infinitely large illumination beam for three illumination beam sizes D i and for an observation footprint with diameter D o = 20 mm, in the case of large-grained snow (1–1.5 mm) at 632 nm (worst-case study).

Fig. 2
Fig. 2

Schematic drawing of the optical design of the spectrogonio radiometer. Vis, visible; QTH, quartz tungsten halogen.

Fig. 4
Fig. 4

Signal (S) and signal-to-noise (S/N) ratio (calculated from 25 individual measurements) for the visible and IR detectors (slit width = 1500 μm, time constant of the lock-in amplifier = 1 s, θ i = 0°, θ r = 15°). Spectralon and annealed sulfur panels,18 with reflectance close to 1, are used to cover the 250–5000-nm range.18 Overlapping curves correspond to different gratings. Absorptions around 2700 and 4250 nm are due to atmospheric H2O and CO2.

Fig. 5
Fig. 5

Light-intensity variations induced by fiber-optic curvature. (a) Illumination intensity as a function of the incident angle θ i . Three independent measurements are shown. (b) Ratio of the second and third measurements relative to the first one. An angular dependency of 0.5% and a nonreproducibility of less than ±0.2% are observed.

Fig. 6
Fig. 6

Spatial homogeneity of the illumination beam at the sample surface for vertical illumination (λ = 700 nm). The contour curves express the irradiance in percents relative to the maximum value.

Fig. 7
Fig. 7

Polarization: ratio (P - S)/(P + S) of the P (radiation with the electric field vector parallel to the grating grooves) and S (perpendicular) components of the light (a) at the exit of the monochromator and (b) at the center of the illumination beam. l/mm, lines/mm.

Fig. 8
Fig. 8

Homogeneity of the illumination beam (in the principal plane) for both P i (radiation with the electric field vector parallel to the sample surface) and S i (perpendicular to P i ): (a) at 700 nm and (b) at 900 nm. Both S i and P i are normalized to 1 in the center of the beam.

Tables (1)

Tables Icon

Table 1 Instrument Characteristics

Metrics