Abstract

We propose and demonstrate a novel high-voltage optical-fiber sensor. This sensor consists of an emitting fiber, a receiving fiber, and a piezoelectric bimorph transducer. The emitting fiber is fixed in a base, whereas the receiving fiber is mounted on the free end of the piezoelectric bimorph transducer. When a voltage is applied to the piezoelectric bimorph transducer, its free end is displaced over a distance δ. The displacement induces a loss in the optical coupling between the emitting and the receiving fiber. The voltage can be measured by monitoring the coupling loss.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. F. Jaeger, Lawrence Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–235 (1989).
    [CrossRef]
  2. W. B. Spillman, R. L. Gravel, “Moving fiber-optic hydrophone,” Opt. Lett. 5, 30–31 (1980).
    [CrossRef] [PubMed]
  3. T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, New York, 1990).
  4. V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
    [CrossRef]
  5. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 2000).
  6. J. K. Lee, M. A. Marcus, “The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures,” Ferroelectrics 32, 93–101 (1982).
    [CrossRef]
  7. S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
    [CrossRef]

1996

V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
[CrossRef]

1991

S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
[CrossRef]

1989

N. A. F. Jaeger, Lawrence Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–235 (1989).
[CrossRef]

1982

J. K. Lee, M. A. Marcus, “The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures,” Ferroelectrics 32, 93–101 (1982).
[CrossRef]

1980

Cao, W.

S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
[CrossRef]

Chandran, S.

V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
[CrossRef]

Cross, L. E.

V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
[CrossRef]

S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
[CrossRef]

Gravel, R. L.

Ikeda, T.

T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, New York, 1990).

Jaeger, N. A. F.

N. A. F. Jaeger, Lawrence Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–235 (1989).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 2000).

Kugel, V. D.

V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
[CrossRef]

Lee, J. K.

J. K. Lee, M. A. Marcus, “The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures,” Ferroelectrics 32, 93–101 (1982).
[CrossRef]

Li, S.

S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
[CrossRef]

Marcus, M. A.

J. K. Lee, M. A. Marcus, “The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures,” Ferroelectrics 32, 93–101 (1982).
[CrossRef]

Spillman, W. B.

Young, Lawrence

N. A. F. Jaeger, Lawrence Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–235 (1989).
[CrossRef]

Appl. Phys. Lett.

V. D. Kugel, S. Chandran, L. E. Cross, “Caterpillar-type piezoelectric d33 bimorph transducer,” Appl. Phys. Lett. 69, 2021–2023 (1996).
[CrossRef]

Ferroelectrics

J. K. Lee, M. A. Marcus, “The deflection-bandwidth product of poly(vinylidene fluoride) benders and related structures,” Ferroelectrics 32, 93–101 (1982).
[CrossRef]

J. Appl. Phys.

S. Li, W. Cao, L. E. Cross, “The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic,” J. Appl. Phys. 69, 7219–7224 (1991).
[CrossRef]

J. Lightwave Technol.

N. A. F. Jaeger, Lawrence Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–235 (1989).
[CrossRef]

Opt. Lett.

Other

T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, New York, 1990).

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the high-voltage optical fiber sensor.

Fig. 2
Fig. 2

Dimensions of the piezoelectric bimorph cantilever and coordinate system.

Fig. 3
Fig. 3

(a) Coupling efficiency and (b) optical loss versus the E field.

Fig. 4
Fig. 4

Sensitivity versus the E field.

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

Measured output as a function of applied voltage.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ=32 d31l2t E,
η=2πarccosδ2a-δπa1-δ2a21/2.
η=fδ.
RE=10 log eη C ηδ,
EmaxδmaxC.
fδ=0.
EmaxEbreakdown.
δmaxC=Ebreakdown.
l2t0.07 m.
fHz=0.162 Yρtl2,

Metrics