Abstract

It is shown that the use of slabs instead of rods makes it possible to fabricate Faraday isolators and Faraday mirrors operating at a multikilowatt power. Analytical dependences of thermally induced depolarization in Faraday devices on radiation power and on slab aspect ratio have been obtained.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
    [CrossRef]
  2. K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
    [CrossRef]
  3. M. R. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, “Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002).
    [CrossRef]
  4. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000).
    [CrossRef]
  5. A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
    [CrossRef]
  6. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.
  7. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  8. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  9. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
    [CrossRef]
  10. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
    [CrossRef]
  11. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  12. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
    [CrossRef]
  13. G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
    [CrossRef]
  14. I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
    [CrossRef]
  15. C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  16. V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).
  17. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
    [CrossRef]
  18. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
    [CrossRef] [PubMed]
  19. E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratk. Soobsch. Fiz. 8, 67–75 (1971).
  20. M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).
  21. A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka i Tehnika, Minsk, 1988).
  22. E. A. Khazanov, “High-power propagation effects in different designs of a Faraday isolator,” in Optical Pulse and Beam Propagation II, Y. B. Band, ed., Proc. SPIE3927, 359–367 (2000).
    [CrossRef]
  23. A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).
  24. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
    [CrossRef]
  25. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
    [CrossRef]
  26. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
    [CrossRef]
  27. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
    [CrossRef]
  28. K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
    [CrossRef]
  29. E. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 115–126 (2003).
    [CrossRef]
  30. A. Ikesue, Japan Fine Ceramics Center, Nagoya, Japan (personal communication, 2002).
  31. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
    [CrossRef]
  32. M. Kagan, E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
    [CrossRef]

2003

M. Kagan, E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

2002

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

M. R. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, “Quasi-continuous-wave birefringence-compensated single- and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002).
[CrossRef]

2001

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

2000

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000).
[CrossRef]

1999

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

1987

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

1985

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

1980

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

1971

E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratk. Soobsch. Fiz. 8, 67–75 (1971).

1969

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Anastasiyev, A. A.

Andreev, N.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

Andreev, N. F.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Babin, A.

Carr, I. D.

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

Chen, F. S.

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Denman, C. A.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Dianov, E. M.

E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratk. Soobsch. Fiz. 8, 67–75 (1971).

Gelikonov, V. M.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Giuliani, G.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Gusovskii, D. D.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Hanna, D. C.

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

Ikesue, A.

Ivanov, I.

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

Kagan, M.

M. Kagan, E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

Kaminskii, A. A.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Katin, E. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Khazanov, E.

M. Kagan, E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

E. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 115–126 (2003).
[CrossRef]

Khazanov, E. A.

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.

E. A. Khazanov, “High-power propagation effects in different designs of a Faraday isolator,” in Optical Pulse and Beam Propagation II, Y. B. Band, ed., Proc. SPIE3927, 359–367 (2000).
[CrossRef]

Kiselev, A.

Klemz, G.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

Kubina, P.

Kulagin, O.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.

Kurimura, S.

Lai, K. S.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Leonov, V. I.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Libby, S. I.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Lu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lu, J. H.

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Lu, J. R.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Lupei, V.

Mehl, O.

Menzel, R.

Mezenov, A. V.

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Movshevich, B.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Murai, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Novikov, M. A.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Ostermeyer, M. R.

Palashov, O.

Palashov, O. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Pasmanik, G.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Phua, P. B.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Potemkin, A. K.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Poteomkin, A.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

Poteomkin, A. K.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Reitze, D.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.

Reitze, D. H.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Ristori, P.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Rodchenkov, V.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Sato, Y.

Scott, A.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Severikov, V. N.

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka i Tehnika, Minsk, 1988).

Shaykin, A.

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

Shirakawa, A.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

Shoji, I.

Soan, P.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Soms, L. N.

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Stepanov, A. I.

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

Tabor, M. J.

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Taira, T.

Takaichi, K.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Ueda, K.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Uematsu, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Voytovich, A.

Voytovich, A. P.

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka i Tehnika, Minsk, 1988).

Wu, R.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Xu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yagi, H.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yanagitani, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yoshida, K.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.

Zelenogorsky, V.

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys.

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Appl. Phys. B

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

IEEE J. Quantum Electron.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys. Part 2

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

Kratk. Soobsch. Fiz.

E. M. Dianov, “Thermal distortion of laser cavity in case of rectangular garnet slab,” Kratk. Soobsch. Fiz. 8, 67–75 (1971).

Opt. Commun.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Opt. Lett.

Quantum Electron.

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

M. Kagan, E. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45 dB Faraday isolator for 100 W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000).
[CrossRef]

Sov. Tech. Phys. Lett.

V. M. Gelikonov, D. D. Gusovskii, V. I. Leonov, M. A. Novikov, “Birefringence compensation in single-mode optical fibers,” Sov. Tech. Phys. Lett. 13, 322–323 (1987).

Other

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka i Tehnika, Minsk, 1988).

E. A. Khazanov, “High-power propagation effects in different designs of a Faraday isolator,” in Optical Pulse and Beam Propagation II, Y. B. Band, ed., Proc. SPIE3927, 359–367 (2000).
[CrossRef]

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986).

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

A. Poteomkin, N. Andreev, E. Khazanov, A. Shaykin, V. Zelenogorsky, I. Ivanov, “Use of scanning Hartmann sensor for measurement of thermal lensing in TGG crystal,” in Laser Crystals, Glasses, and Nonlinear Materials Growth and Characterization, Y. Y. Kalisky, ed., Proc. SPIE4970, 10–21 (2003).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Reitze, “Investigation of self-induced distortions of laser radiation in lithium niobate and terbium gallium garnet,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 250–251.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices, and Applications, J. W. Pierce, ed., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

E. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 115–126 (2003).
[CrossRef]

A. Ikesue, Japan Fine Ceramics Center, Nagoya, Japan (personal communication, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a), (d), Traditional and (b), (c), (e) novel designs of (a), (b), (c) Faraday isolator and (d), (e) Faraday mirror. 1, 4, polarizers; 2, λ/2 plates; 3, 45° Faraday rotator; 5, 22.5° clockwise Faraday rotator; 6, 22.5° counterclockwise Faraday rotator; 7, 67.5° reciprocal polarization rotator; 8, laser active element; 9, 30° Faraday rotator; 10, 90° reciprocal polarization rotator; 11, 15° Faraday rotator.

Fig. 2
Fig. 2

Use of slabs in Faraday devices.

Fig. 3
Fig. 3

Analytical (curves) and numerical (points) dependences of depolarization ratio on aspect ratio. For Faraday isolator (thin curves) designs: for Fig. 1(a), crosses; Fig. 1(b), pluses; Fig. 1(c), squares for Faraday mirror (thick lines): Fig. 1(d), diamonds; Fig. 1(e), circles.

Fig. 4
Fig. 4

Analytical (dashed curves) and numerical (solid lines) dependences of depolarization ratio on normalized power p for Faraday isolator designs presented in Figs. 1(a)1(c) (A) and for Faraday mirror designs presented in Fig. 1(d)1(e) (B): rod geometry (thick lines) and slab geometry with aspect ratio R s = 4 (thin lines). We assume TGG crystal with the [001] orientation. The laser power P 0 = 1 kW corresponds to parameter |p| = 1 for the best TGG sample studied in Ref. 11 and |p| = 2 for an average TGG sample from Ref. 11.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

γslab=-0.5ts0.5ts0ws |E1 · x0|2dxdy-0.5ts0.5ts0ws |E1|2dxdy.
δl=π pRs16-2y2ts2  for 001,
δl=π pRs1+2ξ316-2y2ts2  for 111,
Rs=ws/ts
p=LλQαP0κ,
Q=1LdLdTn0341+ν1-νp11-p12, ξ=2p44p11-p12,
Fδc, δl=sinδ2cotδ2-i δlδ-δcδδcδcotδ2+i δlδ,
δ2=δ12+δc2;
L2βL=cos 2βLsin 2βLsin 2βL-cos 2βL,RβR=cos βRsin βR-sin βRcos βR.
E1=Fδc=π/2, δ1L23π/8Ein,
E1=L2π/4Fδc=-π/4, δ1/2×L2π/8Fδc=π/4, δ1/2Ein,
E1=L2π/16Fδc=π/4, δ1/2×R3π/8Fδc=π/4, δ1/2Ein,
E1=Fδc=π/2, δ1Fδc=π/2, δ1Ein,
E1=Fδc=2π/3, 2δ1/3R-π/2×Fδc=π/6, δ1/3Fδc=π/6, δ1/3×Rπ/2Fδc=π/3, 2δ1/3Ein.
γslab=145 Rs-2p22.22×10-3pRs2 for Fig. 1a,
γslab=π-42+223780 Rs-4p47.02×10-5pRs4 for Fig. 1b,
γslab=π-2223780 Rs-4p42.60×10-5pRs4 for Fig. 1c,
γslab=445 Rs-2p28.89×10-2pRs2 for Fig. 1d,
γslab=π-232945 Rs-4p41.10×10-4pRs4 for Fig. 1e.
γrod=A1π2 p20.0139p2 for Fig. 1a,
γrod=p48A2π4 ξ2b2-a26.89×10-5ξ2p4 if ξ>1.315 for Fig. 1b,
γrod=p48A2π4b2+2a28.48×10-5p4  if ξ=1 for Fig. 1b,
γrod=p42a2A2π43ξ4+2ξ2+31.32×10-63ξ4+2ξ2+3p4 for Fig. 1c,
γrod=2A1π2 p20.0278p2 for Fig. 1d,
γrod=23-π2p42π43ξ4+2ξ2+3A22.24×10-53ξ4+2ξ2+3p4 for Fig. 1e,
a=π-228, b=2-24,A1=01y-exp-yy-12dyexpy0.137,A2=01y-exp-yy-14dyexpy0.0421.
F=tswsκP0Lα0dndT-1LdLdT αTn0341+ν1-νp11+p12.
Pmax=12RTRsL,

Metrics