Abstract

Free-running thulium laser pulses (Cr:Tm:YAG, λ = 2.01 μm, t p = 300 μs) were applied to a purified, degassed water sample and the resulting temperature rise was investigated by an optical temperature probe. The probe detected water reflectance index changes with temperature and also the onset of vaporization, which was found to occur in a superheat regime, at approximately 230 °C. The experimental data were compared with theoretical temperature calculations, and deviations of less than 20 °C were stated. The best agreement between theory and experiment was found for temperatures below 180 °C, defining by this the method’s high accuracy limit. In conclusion, both the optical temperature probe and the presented calculations can help to improve dosimetry in pulsed IR laser applications by precise temperature measurement and prediction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
    [CrossRef]
  2. B. I. Lange, T. Brendel, G. Hüttmann, “Temperature dependence of light absorption in water at holmium and thulium laser wavelengths,” Appl. Opt. 41, 5797–5803 (2002).
    [CrossRef] [PubMed]
  3. R. Brinkmann, C. Hansen, “Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water,” Appl. Opt. 39, 3361–3370 (2000).
    [CrossRef]
  4. M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
    [CrossRef]
  5. B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
    [CrossRef]
  6. T. Brendel, R. Brinkmann, “Highly resolved tracing of Q-switched mid-IR laser-induced vaporization,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 303–311 (2001).
    [CrossRef]
  7. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  8. “Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,” available at http://www.iapws.org .
  9. V. P. Skripov, Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon & Breach, New York, 1988).
  10. I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Nauka, Moscow, 1991).
  11. M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
    [CrossRef] [PubMed]
  12. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
    [CrossRef]
  13. P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University, Princeton, N.J., 1996).

2002 (1)

2001 (1)

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

1998 (1)

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

1996 (1)

M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
[CrossRef] [PubMed]

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

1965 (1)

Anderson, R. R.

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

Birngruber, R.

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

Brendel, T.

B. I. Lange, T. Brendel, G. Hüttmann, “Temperature dependence of light absorption in water at holmium and thulium laser wavelengths,” Appl. Opt. 41, 5797–5803 (2002).
[CrossRef] [PubMed]

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

T. Brendel, R. Brinkmann, “Highly resolved tracing of Q-switched mid-IR laser-induced vaporization,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 303–311 (2001).
[CrossRef]

Brinkmann, R.

R. Brinkmann, C. Hansen, “Beam-profile modulation of thulium laser radiation applied with multimode fibers and its effect on the threshold fluence to vaporize water,” Appl. Opt. 39, 3361–3370 (2000).
[CrossRef]

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

T. Brendel, R. Brinkmann, “Highly resolved tracing of Q-switched mid-IR laser-induced vaporization,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 303–311 (2001).
[CrossRef]

Bronstein, I. N.

I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Nauka, Moscow, 1991).

Debenedetti, P. G.

P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University, Princeton, N.J., 1996).

Domankevitz, Y.

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

Frenz, M.

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
[CrossRef] [PubMed]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Hansen, C.

Hooper, B. A.

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

Hüttmann, G.

Könz, F.

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

Lange, B. I.

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Lin, C.

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

Malitson, I. H.

Paltauf, G.

M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
[CrossRef] [PubMed]

Pratisto, H.

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Schmidt-Kloiber, H.

M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
[CrossRef] [PubMed]

Semendjajew, K. A.

I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Nauka, Moscow, 1991).

Skripov, V. P.

V. P. Skripov, Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon & Breach, New York, 1988).

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Theisen, D.

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

Weber, H. P.

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. A. Hooper, Y. Domankevitz, R. R. Anderson, C. Lin, “Optical temperature probe,” Appl. Phys. Lett. 78, 2381–2383 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Brinkmann, D. Theisen, T. Brendel, R. Birngruber, “Single-pulse 30-J holmium laser for myocardial revascularization: a study on ablation dynamics in comparison to CO2 laser-TMR,” IEEE J. Sel. Top. Quantum Electron. 5, 969–980 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Frenz, F. Könz, H. Pratisto, H. P. Weber, “Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water,” J. Appl. Phys. 84, 5905–5912 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).
[CrossRef]

Phys. Rev. Lett. (1)

M. Frenz, G. Paltauf, H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546–3549 (1996).
[CrossRef] [PubMed]

Other (5)

P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University, Princeton, N.J., 1996).

“Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam,” available at http://www.iapws.org .

V. P. Skripov, Thermophysical Properties of Liquids in the Metastable (Superheated) State (Gordon & Breach, New York, 1988).

I. N. Bronstein, K. A. Semendjajew, Taschenbuch der Mathematik (Nauka, Moscow, 1991).

T. Brendel, R. Brinkmann, “Highly resolved tracing of Q-switched mid-IR laser-induced vaporization,” in Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical, D. D. Duncan, S. L. Jacques, P. C. Johnson, eds., Proc. SPIE4257, 303–311 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Calibration measurement to determine incident angle α. The solid curve shows the theoretical course [R (T)/R (20 °C)]α for the best-fit angle α = 44.2°.

Fig. 3
Fig. 3

Axial profile of the normalized temperature rise Θ̂(z) = Θ(z)/Θ0 at the end of a 300-μs laser pulse (solid curve). The prism wall is located at z = 0.

Fig. 4
Fig. 4

(a) Intensity rise as measured by the PMT (mV) during irradiation with a free-running thulium laser pulse of indicated power profile [gray line, (a.u.)] and a total radiant exposure H = 277 mJ/mm2. The same in (b) for another pulse of similar radiant exposure H = 279 mJ/mm2. Note the pronounced signal rise at the end of this pulse (marked by an arrow), indicating the onset of vaporization.

Fig. 5
Fig. 5

Temperature dependence of the water refractive index n W (λ = 633 nm) at ambient pressure and, for comparison, at p = 100 bar and p = 1 kbar (see text for more details).

Fig. 6
Fig. 6

Maximum water temperature as evaluated from data of the optical temperature probe at the prism wall (single spots) and according to temperature calculations T(H) (solid and dotted curves). The vertical error bars in the experimental data reflect uncertainties in the temperature determination that are due to signal noise (visible in the traces of Fig. 4).

Tables (1)

Tables Icon

Table 1 Coefficients of the Polynomial Regressiona

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

RT|α=tanα-βTtanα+βT2,
βT=arcsinnP sinαnWT.
T=TItt,
T=μTρTCT.
TH=b-γ-b+γfT0expHγ2cfT0expHγ-1,
fT0=2cT0+b-γ2cT0+b+γ.
Θz, t=Θδτ, z  Iτt=- Θδt-τ, zIτdτ.
Θz, tp=1tp0tp Θδτ, zdτ.
nWT=nW,0+nW,1T+nW,2T2,
nW,0=1.33438±1×10-5,nW,1=-8.715×10-5±4×10-81/°C,nW,2=-8.159×10-7±4×10-101/°C2.

Metrics