Abstract

An integrated polarized light guide was designed and fabricated for use as a liquid-crystal backlight with emphasis on uniformity of the light and conversion of p-polarized to s-polarized light. Two different micro-optical structures were fabricated both on the top and the bottom surfaces of the light guide. On the top surface, a subwavelength grating separates s-polarized and p-polarized light to achieve a polarization-conversion efficiency of 69%. A 1.7 gain factor of polarization efficiency was obtained to increase the utility of light for liquid-crystal illumination.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).
  2. S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).
  3. M. F. Weber, “Retroreflecting sheet polarizer,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 1992), pp. 427–429.
  4. K. W. Chien, H. P. D. Shieh, “An integrated lightguide equipped with polarization conversion,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 2002), pp. 1229–1231.
    [CrossRef]
  5. H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.
  6. A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984).
  7. F. Flory, L. Escoubas, B. Lazarides, “Artificial anisotropy and polarizing filters,” Appl. Opt. 41, 3332–3335 (2002).
    [CrossRef] [PubMed]
  8. L. L. Soares, L. Cescato, “Metallized photoresist grating as a polarizing beam splitter,” Appl. Opt. 40, 5906–5910 (2001).
    [CrossRef]
  9. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1388 (1982).
    [CrossRef]
  10. J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
    [CrossRef]
  11. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
    [CrossRef]
  12. S. K. Moore, “Imprint lithography for nano-components,” IEEE Spectrum 39(5), 25–27 (2002).

2002

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

S. K. Moore, “Imprint lithography for nano-components,” IEEE Spectrum 39(5), 25–27 (2002).

F. Flory, L. Escoubas, B. Lazarides, “Artificial anisotropy and polarizing filters,” Appl. Opt. 41, 3332–3335 (2002).
[CrossRef] [PubMed]

2001

1997

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

1991

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

1982

Bastiaansen, C. W. M.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.

Blom, S. M. P.

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

Broer, D. J.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.

Cescato, L.

Cheng, C. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Chien, K. W.

K. W. Chien, H. P. D. Shieh, “An integrated lightguide equipped with polarization conversion,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 2002), pp. 1229–1231.
[CrossRef]

Chou, H. P.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Cornelissen, H. J.

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.

Escoubas, L.

Fainman, Y.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Flory, F.

Gaylord, T. K.

Goodnick, S. M.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

Greiner, H.

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

Huck, H. P. M.

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

Jagt, H. J. B.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.

Lazarides, B.

Moharam, M. G.

Moore, S. K.

S. K. Moore, “Imprint lithography for nano-components,” IEEE Spectrum 39(5), 25–27 (2002).

Salvekar, A. A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Scherer, A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Shieh, H. P. D.

K. W. Chien, H. P. D. Shieh, “An integrated lightguide equipped with polarization conversion,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 2002), pp. 1229–1231.
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).

Soares, L. L.

Tyan, R. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

Weber, M. F.

M. F. Weber, “Retroreflecting sheet polarizer,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 1992), pp. 427–429.

Weisshaar, A.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

Wu, J. C.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

Wybourne, M. N.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984).

Yindeepol, W.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. C. Wu, M. N. Wybourne, W. Yindeepol, A. Weisshaar, S. M. Goodnick, “Interference phenomena due to a double bend in a quantum wire,” Appl. Phys. Lett. 59, 102–104 (1991).
[CrossRef]

IEEE Spectrum

S. K. Moore, “Imprint lithography for nano-components,” IEEE Spectrum 39(5), 25–27 (2002).

J. Opt. Soc. Am.

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1388 (1982).
[CrossRef]

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarization beam splitter,” J. Opt. Soc. Am. 14, 1627–1636 (1997).
[CrossRef]

SID J.

S. M. P. Blom, H. P. M. Huck, H. J. Cornelissen, H. Greiner, “Towards a polarized light emitting backlight: micro-structured anisotropic layers,” SID J. 10, 209–213 (2002).

Other

M. F. Weber, “Retroreflecting sheet polarizer,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 1992), pp. 427–429.

K. W. Chien, H. P. D. Shieh, “An integrated lightguide equipped with polarization conversion,” in Society of Information Display International Symposium Digest (Society of Information Display, Boston, Mass., 2002), pp. 1229–1231.
[CrossRef]

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, C. W. M. Bastiaansen, “Linearly polarized light emitting backlight,” in International Display Workshops Digest (Society of Information Display, Boston, Mass., 2000), pp. 387–389.

A. Yariv, P. Yeh, Optical Waves in Crystal (Wiley, New York, 1984).

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of an integrated light guide. P-polarized light is transmitted and s-polarized light is reflected. S-polarized light is then converted into p-polarized light by passing through a quarter-wave plate twice.

Fig. 2
Fig. 2

Light source coupled into the light guide by a slanted surface. The oblique-incidence guided rays were coupled out by the sidewalls of the slot structures. The density of slot structures controlled the illuminance uniformity of the outcoupling plane.

Fig. 3
Fig. 3

Illuminance profile of the integrated light guide. The maximum and minimum values of illuminance were 43,025 and 34,000 lux, respectively. Consequently, 80% of uniformity was achieved.

Fig. 4
Fig. 4

Transmission efficiency of p-polarized light as a function of the wavelength of incident light for various materials of an additional dielectric layer. The period of the Al grating (100 nm thick) was 0.2 μm, with a 50% duty cycle.

Fig. 5
Fig. 5

Transmission efficiency of p-polarized light as a function of wavelength at various duty cycles (dc) of the multilayer grating. The period of an Al-SiO2 grating was 0.2 μm. The thicknesses of the Al and the SiO2 layers were 100 and 200 nm, respectively.

Fig. 6
Fig. 6

p-polarized light transmission and s-polarized light reflection efficiencies of the subwavelength grating as functions of wavelength. The subwavelength grating retains high reflection efficiency for s-polarized light and high transmission efficiency for p-polarized light in the entire visible spectrum.

Fig. 7
Fig. 7

Fabrication of the subwavelength grating. E-beam lithography and a lift-off method were used to fabricate the multilayered subwavelength grating.

Fig. 8
Fig. 8

Scanning-electron microscope photograph of the subwavelength grating with a period of 0.2 μm and a duty cycle of 50%.

Fig. 9
Fig. 9

Comparison of experimental and simulated results from the subwavelength grating. For measurements at λ = 437, 532, 630 nm the reflection efficiencies were 70%, 76%, and 85% for s-polarized light and 32%, 35%, and 30% for p-polarized light, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n=fn12+1-fn221/2,
n=n1n2fn22+1-fn12-1/2.
λ=pns±sin θ/m,

Metrics