Abstract

I point out a confusion that is rather common in optical forces, i.e., that the time average of the Lorentz force on a dipole (for a harmonic time-varying field) is sometimes assumed to be a gradient force that is due to omission of the radiative reaction term in the polarizability of the dipole.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rohrbach, E. H. K. Stelzer, “Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002).
    [CrossRef] [PubMed]
  2. A. Rohrbach, E. H. K. Stelzer, “Optical trapping of dielectric particles in arbitrary fields,” J. Opt. Soc. Am. A 18, 839–853 (2001).
    [CrossRef]
  3. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
    [CrossRef]
  4. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
    [CrossRef]
  5. S. Antoci, L. Mihich, “Detecting Abraham’s force of light by the Fresnel-Fizeau effect,” Eur. Phys. J. D 3, 205–210 (1998).
  6. S. Antoci, L. Mihich, “Does light exert Abraham’s force in a transparent medium?” arXiv.org e-Print archive, file 9808002, http://arxive.org/abs/physics/9808002 .
  7. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1980).
  8. One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
  9. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  10. P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
    [CrossRef]
  11. P. C. Chaumet, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14,119–14,127 (2000).
    [CrossRef]

2002 (1)

2001 (1)

2000 (2)

P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[CrossRef]

P. C. Chaumet, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14,119–14,127 (2000).
[CrossRef]

1998 (1)

S. Antoci, L. Mihich, “Detecting Abraham’s force of light by the Fresnel-Fizeau effect,” Eur. Phys. J. D 3, 205–210 (1998).

1996 (1)

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1979 (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Antoci, S.

S. Antoci, L. Mihich, “Detecting Abraham’s force of light by the Fresnel-Fizeau effect,” Eur. Phys. J. D 3, 205–210 (1998).

S. Antoci, L. Mihich, “Does light exert Abraham’s force in a transparent medium?” arXiv.org e-Print archive, file 9808002, http://arxive.org/abs/physics/9808002 .

Barnett, S. M.

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

Brevik, I.

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[CrossRef]

P. C. Chaumet, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14,119–14,127 (2000).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Huttner, B.

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1980).

Loudon, R.

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

Matloob, R.

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

Mihich, L.

S. Antoci, L. Mihich, “Detecting Abraham’s force of light by the Fresnel-Fizeau effect,” Eur. Phys. J. D 3, 205–210 (1998).

S. Antoci, L. Mihich, “Does light exert Abraham’s force in a transparent medium?” arXiv.org e-Print archive, file 9808002, http://arxive.org/abs/physics/9808002 .

Nieto-Vesperinas, M.

P. C. Chaumet, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14,119–14,127 (2000).
[CrossRef]

P. C. Chaumet, M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000).
[CrossRef]

Rohrbach, A.

Stelzer, E. H. K.

Appl. Opt. (1)

Astrophys. J. (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Eur. Phys. J. D (1)

S. Antoci, L. Mihich, “Detecting Abraham’s force of light by the Fresnel-Fizeau effect,” Eur. Phys. J. D 3, 205–210 (1998).

J. Opt. Soc. Am. A (1)

J. Phys. B (1)

One can find Eq. (5) by taking the transverse imaginary part of the free-space Green function, Im[GT(r, r)] = (2/3)k3, as described in S. M. Barnett, B. Huttner, R. Loudon, R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).

Opt. Lett. (1)

Phys. Rep. (1)

I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep. 52, 133–201 (1979).
[CrossRef]

Phys. Rev. A (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Phys. Rev. B (1)

P. C. Chaumet, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14,119–14,127 (2000).
[CrossRef]

Other (2)

S. Antoci, L. Mihich, “Does light exert Abraham’s force in a transparent medium?” arXiv.org e-Print archive, file 9808002, http://arxive.org/abs/physics/9808002 .

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (8)

Equations on this page are rendered with MathJax. Learn more.

fr, t=pr, tEr, t+pr, ttBr, t.
fr, t=αEr, tEr, t/2+α tEr, t×Br, t,
fr=fr, t=α2c Ir+α mr, tafter-mr, tbeforeΔt,
fr=1/2αEr, tEr, t.
Esr, t=i2/3k3pr, t,
pr, t=αEr, t=α0Er, t+Esr, t,
α=α0/1-2/3ik3α0.
fir=1/2ReαEjriEjr*,

Metrics