Abstract

A Jamin double-shearing interferometer with three changeable schemes is proposed for the measurement of diffraction-limited laser wave front. A concept of detectable wave-front height is thus defined, and on this basis the limits of detectable wave-front height from the suggested schemes of interferometer are analyzed. The design is detailed, the simulation for wave aberrations is given, and the experiment is demonstrated. One of the major features of this interferometer is that it is capable of visually testing a diffraction-limited wave front immediately by the fringes with the matched accuracy and minimum detectable wave-front height on the order of 0.1λ.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegmann, Lasers (University Science, Mill Valley, Calif., 1986).
  2. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, U.K., 1999).
  3. M. G. Joseph, Introduction to Wavefront Sensors (SPIE Optical Engineering Press, Bellingham, Wash., 1995).
  4. D. Malacala, ed., Optical Shop Testing (Wiley, New York, 1978).
  5. R. S. Sirohi, M. P. Kothiyal, “Double wedge plate shearing interferometer for collimation test,” Appl. Opt. 26, 4054–4056 (1987).
    [CrossRef] [PubMed]
  6. Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
    [CrossRef]
  7. J. D. Briers, “Ronchi test formulae. 1. Theory,” Opt. Laser Technol. 11, 189–196 (1979).
    [CrossRef]

1993 (1)

Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
[CrossRef]

1987 (1)

1979 (1)

J. D. Briers, “Ronchi test formulae. 1. Theory,” Opt. Laser Technol. 11, 189–196 (1979).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, U.K., 1999).

Briers, J. D.

J. D. Briers, “Ronchi test formulae. 1. Theory,” Opt. Laser Technol. 11, 189–196 (1979).
[CrossRef]

Cho, H. M.

Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
[CrossRef]

Joseph, M. G.

M. G. Joseph, Introduction to Wavefront Sensors (SPIE Optical Engineering Press, Bellingham, Wash., 1995).

Kothiyal, M. P.

Lee, I. W.

Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
[CrossRef]

Lee, Y. W.

Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
[CrossRef]

Siegmann, A. E.

A. E. Siegmann, Lasers (University Science, Mill Valley, Calif., 1986).

Sirohi, R. S.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, U.K., 1999).

Appl. Opt. (1)

Opt. Eng. (1)

Y. W. Lee, H. M. Cho, I. W. Lee, “Half-aperture shearing interferometer for collimation testing,” Opt. Eng. 32, 2837–2840 (1993).
[CrossRef]

Opt. Laser Technol. (1)

J. D. Briers, “Ronchi test formulae. 1. Theory,” Opt. Laser Technol. 11, 189–196 (1979).
[CrossRef]

Other (4)

A. E. Siegmann, Lasers (University Science, Mill Valley, Calif., 1986).

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, U.K., 1999).

M. G. Joseph, Introduction to Wavefront Sensors (SPIE Optical Engineering Press, Bellingham, Wash., 1995).

D. Malacala, ed., Optical Shop Testing (Wiley, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of Jamin double-shearing interferometer.

Fig. 2
Fig. 2

Arrangement of shearing plates and routing of beams: (a) a pair on the down-half aperture, (b) a pair on up-half aperture.

Fig. 3
Fig. 3

Simulation pattern of Jamin double-shearing interferometer: (a) perfect spherical wave front, (b) spherical aberration, (c) coma perpendicular to shear axis, (d) coma parallel to shear axis.

Fig. 4
Fig. 4

Interferogram of a sphere wave front: (a) in a lateral-with-finite-fringe interferometer and (b) in the double-shear interferometer.

Tables (1)

Tables Icon

Table 1 Minimum Detectable Wave-front Height

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

S2=dsin θ-sin 2θ2n2-sin2 θ.
Δθ=n2-sin2 θcos θ-1α  α  1.
T=λ2Δθ.
w0x+S2, y-w0x-S2, y+2Δθx=Pλ y>0,
w0x+S2, y-w0x-S2, y-2Δθx=Qλ y<0.
L=2R-S.
w0x, y=x2+y2R2 wa,
w0x+S2, y-w0x-S2, y=2SwaxR2.
Δws=wak, k=R22SL,
wa=-kM T1-TT1 λ,
wa=-kM T1+TT1 λ,
wa,mindigital-kλ M2ΔNN.
wa,minmanual-kMλδ.
wa=-kM2T1-T2T1+T22 λ,
wa=-kM2T1+T2T1-T22 λ.
wa,min-kλ2M2ΔNN.
wa,min-kMλ2 δ.
W0x, y=x2+y22R4 Wa,
ΔWx, y=W0x+S2, y-W0x-S2, y=4Sxx2+y2+S2/4R4 Wa.
4Sxx2+y2+S2/4R4 Wa+2Δθx=Pλ y>0,
4Sxx2+y2+S2/4R4 Wa-2Δθx=Qλ y<0.
W0x, y=yx2+y2R3 Wa.
2SxyR3 Wa+2Δθx=Pλ y>0,
2SxyR3 Wa-2Δθx=Qλ y<0.
W0x, y=xx2+y2R3 Wa.
3Sx2+Sy2+S3/4R3 Wa+2Δθx=Pλ y>0,
3Sx2+Sy2+S3/4R3 Wa-2Δθx=Qλ y<0.

Metrics