Abstract

A technique is described for the simultaneous measurement of the difference in the normal components of strain and of the shear strain in luminescent III-V material from the degree of polarization (DOP) of photoluminescence. This technique for the measurement of shear strain and of the difference in the normal components of strain in InP was calibrated by applying known external loads on the bars of InP with V grooves etched into the bars and by fitting the experimental results to two-dimensional finite-element simulations. Fits to the difference in the normal components of strain (as opposed to stress) yielded significantly smaller residues. On this basis we conclude that the DOP of luminescence is proportional to the difference in the normal components of strain.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).
  2. G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).
  3. G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.
  4. E. P. O’Reilly, “Valence band engineering in strained layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989).
    [CrossRef]
  5. I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
    [CrossRef]
  6. D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989).
    [CrossRef]
  7. F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963).
    [CrossRef]
  8. P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
    [CrossRef]
  9. T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973).
    [CrossRef]
  10. C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988).
    [CrossRef]
  11. N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
    [CrossRef]
  12. N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
    [CrossRef]
  13. V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
    [CrossRef]
  14. M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
    [CrossRef]
  15. P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
    [CrossRef]
  16. A. Jakubowicz, “Material and fabrication-related limitations to high-power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes,” Mater. Sci. Eng. B 44, 359–363 (1997).
    [CrossRef]
  17. D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
    [CrossRef]
  18. J.-P. Landesman, “Micro-photoluminescence for the visualization of defects, stress, and temperature profiles in high-power III-V’s devices,” Mater. Sci. Eng. B 91-92, 55–61 (2002).
    [CrossRef]
  19. A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
    [CrossRef]
  20. K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
    [CrossRef]
  21. P. Van der Sluis, “Determination of strain in epitaxial semiconductor structures by high-resolution x-ray diffraction,” Appl. Phys. A 58, 129–134 (1994).
    [CrossRef]
  22. B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
    [CrossRef]
  23. K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
    [CrossRef]
  24. A. Jakubowicz, “Revealing process-induced strain fields in GaAs/AlGaAs lasers via electron irradiation in a scanning electron microscope,” J. Appl. Phys. 70, 1800–1804 (1991).
    [CrossRef]
  25. P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
    [CrossRef]
  26. J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
    [CrossRef]
  27. P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991).
    [CrossRef]
  28. P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992).
    [CrossRef]
  29. P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992).
    [CrossRef]
  30. D. T. Cassidy, “Spatially resolved and polarization-resolved photoluminescence for the study of dislocations and strain in III-V materials,” Mater. Sci. Eng. B 91-92, 2–9 (2002).
    [CrossRef]
  31. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).
  32. P. Kohnke, ed., ANSYS Theory Reference, Release 5.6 (ANSYS, Inc., Canonsburg, Pa., 1999).
  33. F. H. Peters, D. T. Cassidy, “Spatially and polarization-resolved electroluminescence of 1.3-μm InGaAsP semiconductor diode lasers,” Appl. Opt. 28, 3744–3750 (1989).
    [CrossRef] [PubMed]
  34. J. Yang, D. T. Cassidy, “Technique for mapping the spectral uniformity of luminescent semiconducting material,” Appl. Opt. 34, 4794–4799 (1995).
    [CrossRef] [PubMed]
  35. T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
    [CrossRef]
  36. K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
    [CrossRef] [PubMed]
  37. S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
    [CrossRef]
  38. A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
    [CrossRef]
  39. P. D. Colbourne, “Measurement of stresses in III-V semiconductors using the degree of polarization of luminescence,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, 1992).
  40. S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).
  41. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–164.
  42. K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.
  43. A. D. Prins, D. J. Dunstan, Compliance of InP in Properties of Indium Phosphide EMIS Datareviews Series 6 (Inspec, London, 1991).

2002

J.-P. Landesman, “Micro-photoluminescence for the visualization of defects, stress, and temperature profiles in high-power III-V’s devices,” Mater. Sci. Eng. B 91-92, 55–61 (2002).
[CrossRef]

D. T. Cassidy, “Spatially resolved and polarization-resolved photoluminescence for the study of dislocations and strain in III-V materials,” Mater. Sci. Eng. B 91-92, 2–9 (2002).
[CrossRef]

2001

D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
[CrossRef]

2000

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

1997

A. Jakubowicz, “Material and fabrication-related limitations to high-power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes,” Mater. Sci. Eng. B 44, 359–363 (1997).
[CrossRef]

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

1996

S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
[CrossRef]

1995

J. Yang, D. T. Cassidy, “Technique for mapping the spectral uniformity of luminescent semiconducting material,” Appl. Opt. 34, 4794–4799 (1995).
[CrossRef] [PubMed]

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

1994

P. Van der Sluis, “Determination of strain in epitaxial semiconductor structures by high-resolution x-ray diffraction,” Appl. Phys. A 58, 129–134 (1994).
[CrossRef]

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

1993

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

1992

P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992).
[CrossRef]

1991

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991).
[CrossRef]

A. Jakubowicz, “Revealing process-induced strain fields in GaAs/AlGaAs lasers via electron irradiation in a scanning electron microscope,” J. Appl. Phys. 70, 1800–1804 (1991).
[CrossRef]

1990

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

1989

E. P. O’Reilly, “Valence band engineering in strained layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989).
[CrossRef]

I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
[CrossRef]

D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989).
[CrossRef]

F. H. Peters, D. T. Cassidy, “Spatially and polarization-resolved electroluminescence of 1.3-μm InGaAsP semiconductor diode lasers,” Appl. Opt. 28, 3744–3750 (1989).
[CrossRef] [PubMed]

1988

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
[CrossRef]

C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988).
[CrossRef]

1984

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
[CrossRef]

1979

P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
[CrossRef]

1974

J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).

1973

T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973).
[CrossRef]

N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
[CrossRef]

1963

F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963).
[CrossRef]

1960

G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).

Adams, C. S.

C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988).
[CrossRef]

Akasaka, Y.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Arakawa, T.

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

Barwolff, A.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Bassignana, I. C.

I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
[CrossRef]

Bevington, P. R.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–164.

Biefeld, R. M.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Bir, G. L.

G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).

Blakeslee, A. E.

J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).

Brosson, P.

N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
[CrossRef]

Bruce, D. M.

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

Byrom, T. G.

K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.

Cassidy, D. T.

D. T. Cassidy, “Spatially resolved and polarization-resolved photoluminescence for the study of dislocations and strain in III-V materials,” Mater. Sci. Eng. B 91-92, 2–9 (2002).
[CrossRef]

D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
[CrossRef]

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

J. Yang, D. T. Cassidy, “Technique for mapping the spectral uniformity of luminescent semiconducting material,” Appl. Opt. 34, 4794–4799 (1995).
[CrossRef] [PubMed]

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991).
[CrossRef]

F. H. Peters, D. T. Cassidy, “Spatially and polarization-resolved electroluminescence of 1.3-μm InGaAsP semiconductor diode lasers,” Appl. Opt. 28, 3744–3750 (1989).
[CrossRef] [PubMed]

C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988).
[CrossRef]

Chen, J.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Colbourne, P. D.

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991).
[CrossRef]

P. D. Colbourne, “Measurement of stresses in III-V semiconductors using the degree of polarization of luminescence,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, 1992).

Craft, D. C.

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

Daly, M. G.

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

Dawson, L. R.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Dunstan, D. J.

A. D. Prins, D. J. Dunstan, Compliance of InP in Properties of Indium Phosphide EMIS Datareviews Series 6 (Inspec, London, 1991).

Dutta, N. K.

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
[CrossRef]

Elman, B.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

Florez, L. T.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Fritz, I. J.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Geroshini, D.

D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989).
[CrossRef]

Goldman, R. S.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Goodier, J. N.

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).

Gourley, P. L.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Gozdz, A. S.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Gupta, A.

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

Harbison, J. P.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Hartman, R. L.

V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
[CrossRef]

Hirayama, M.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Huebner, K. H.

K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.

Hutter, M.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Inoue, Y.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Jagannath, C.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

Jain, S. C.

S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
[CrossRef]

Jakubowicz, A.

A. Jakubowicz, “Material and fabrication-related limitations to high-power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes,” Mater. Sci. Eng. B 44, 359–363 (1997).
[CrossRef]

A. Jakubowicz, “Revealing process-induced strain fields in GaAs/AlGaAs lasers via electron irradiation in a scanning electron microscope,” J. Appl. Phys. 70, 1800–1804 (1991).
[CrossRef]

Jessop, P. E.

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

Kash, K.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Kato, T.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Kavanagh, K. L.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Kirkby, P. A.

P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
[CrossRef]

Kobayashi, K.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Kobayashi, T.

T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973).
[CrossRef]

Landesman, J.-P.

J.-P. Landesman, “Micro-photoluminescence for the visualization of defects, stress, and temperature profiles in high-power III-V’s devices,” Mater. Sci. Eng. B 91-92, 55–61 (2002).
[CrossRef]

Lisak, D.

D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
[CrossRef]

Maes, H.

S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
[CrossRef]

Mahony, D. D.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Masum Choudhury, A. N. M.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

Matthews, J. W.

J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).

Miller, R. C.

F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963).
[CrossRef]

Miner, C. J.

I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
[CrossRef]

Moore, A. H.

D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
[CrossRef]

Muller, R.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Nagamune, Y.

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

Nishimura, T.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

Nishioka, M.

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

O’Reilly, E. P.

E. P. O’Reilly, “Valence band engineering in strained layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989).
[CrossRef]

Oppermann, H.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Osbourn, G. C.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Parayanthal, P.

V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
[CrossRef]

Patel, N. B.

N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
[CrossRef]

Peters, F. H.

Pikus, G. E.

G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).

Prins, A. D.

A. D. Prins, D. J. Dunstan, Compliance of InP in Properties of Indium Phosphide EMIS Datareviews Series 6 (Inspec, London, 1991).

Puetz, N.

I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
[CrossRef]

Rammohan, K.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Reichl, H.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Rich, D. H.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Ripper, J. E.

N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
[CrossRef]

Robinson, D. K.

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–164.

Ryan, F. M.

F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963).
[CrossRef]

Selway, P. R.

P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
[CrossRef]

Shokhudzhaev, N.

P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
[CrossRef]

Sturge, M. D.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Sugiyama, K.

T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973).
[CrossRef]

Sverdlov, B. N.

P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
[CrossRef]

Swaminathan, V.

V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
[CrossRef]

Temkin, H.

D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989).
[CrossRef]

Thornton, E. A.

K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.

Timoshenko, S.

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).

Tomms, J. W.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Tsukamoto, S.

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

Urban, M.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

Van der Gaag, B. P.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Van der Sluis, P.

P. Van der Sluis, “Determination of strain in epitaxial semiconductor structures by high-resolution x-ray diffraction,” Appl. Phys. A 58, 129–134 (1994).
[CrossRef]

Weatherly, G. C.

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

Weiss, S.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

Westbrook, L. D.

P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
[CrossRef]

Wieder, H. H.

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

Willardson, M.

S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
[CrossRef]

Yacobi, B. G.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

Yang, J.

J. Yang, D. T. Cassidy, “Technique for mapping the spectral uniformity of luminescent semiconducting material,” Appl. Opt. 34, 4794–4799 (1995).
[CrossRef] [PubMed]

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

Yevick, D.

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

Zipperian, T. E.

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

Appl. Opt.

Appl. Phys. A

P. Van der Sluis, “Determination of strain in epitaxial semiconductor structures by high-resolution x-ray diffraction,” Appl. Phys. A 58, 129–134 (1994).
[CrossRef]

Appl. Phys. Lett.

B. G. Yacobi, B. Elman, C. Jagannath, A. N. M. Masum Choudhury, M. Urban, “Cathodoluminescence observation of metallization-induced stress variations in GaAs/AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 52, 1806–1808 (1988).
[CrossRef]

K. Rammohan, D. H. Rich, R. S. Goldman, J. Chen, H. H. Wieder, K. L. Kavanagh, “Study of micrometer-scale spatial variations in strain of a compositionally step-graded InGaAs/GaAs (001) heterostructure,” Appl. Phys. Lett. 66, 869–871 (1995).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Observation of dislocation stresses in InP using polarization-resolved photoluminescence,” Appl. Phys. Lett. 61, 1174–1176 (1992).
[CrossRef]

F. M. Ryan, R. C. Miller, “The effect of uniaxial strain on the threshold current and output of GaAs lasers,” Appl. Phys. Lett. 3, 162–163 (1963).
[CrossRef]

V. Swaminathan, P. Parayanthal, R. L. Hartman, “Electro-optical effects of externally applied 〈100〉 uniaxial stress on InGaAsP 1.3- and 1.5-μm injection lasers,” Appl. Phys. Lett. 52, 1461–1463 (1988).
[CrossRef]

Can. J. Appl. Phys.

P. D. Colbourne, D. T. Cassidy, “Dislocation detection using polarization-resolved photoluminescence,” Can. J. Appl. Phys. 70, 803–812 (1992).
[CrossRef]

IEEE J. Quantum Electron.

N. B. Patel, J. E. Ripper, P. Brosson, “Behavior of threshold current and polarization of stimulated emission of GaAs injection lasers under uniaxial stress,” IEEE J. Quantum Electron. QE-9, 338–341 (1973).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Bonding stress measurements from the degree of polarization of facet emission of AlGaAs superluminescent diodes,” IEEE J. Quantum Electron. 27, 914–920 (1991).
[CrossRef]

P. D. Colbourne, D. T. Cassidy, “Imaging of stresses in GaAs diode lasers using polarization-resolved photoluminescence,” IEEE J. Quantum Electron. 29, 62–68 (1993).
[CrossRef]

IEEE Trans. Adv. Packag.

A. Barwolff, J. W. Tomms, R. Muller, S. Weiss, M. Hutter, H. Oppermann, H. Reichl, “Spectroscopic measurement of mounting-induced strain in optoelectronic devices,” IEEE Trans. Adv. Packag. 23, 170–175 (2000).
[CrossRef]

IEEE Trans. Components Packag. Manuf. Technol. Part A

D. Lisak, D. T. Cassidy, A. H. Moore, “Bonding stress and reliability of high power GaAs based lasers,” IEEE Trans. Components Packag. Manuf. Technol. Part A 24, 92–98 (2001).
[CrossRef]

J. Appl. Phys.

P. A. Kirkby, P. R. Selway, L. D. Westbrook, “Photoelastic waveguides and their effect on stripe-geometry GaAs/GaAlAs lasers,” J. Appl. Phys. 50, 4567–4579 (1979).
[CrossRef]

C. S. Adams, D. T. Cassidy, “Effect of stress on threshold, wavelength, and polarization of the output of semiconductor diode lasers,” J. Appl. Phys. 64, 6631–6638 (1988).
[CrossRef]

N. K. Dutta, D. C. Craft, “Effect of stress on the polarization of stimulated emission from injection lasers,” J. Appl. Phys. 56, 65–70 (1984).
[CrossRef]

I. C. Bassignana, C. J. Miner, N. Puetz, “Photoluminescence and double-crystal x-ray study of InGaAsP/InP: effect of mismatch strain on bandgap,” J. Appl. Phys. 65, 4299–4305 (1989).
[CrossRef]

J. Yang, D. T. Cassidy, “Strain measurement and estimation of photoelastic effects and strain-induced gain change in ridge waveguide lasers,” J. Appl. Phys. 77, 3382–3387 (1995).
[CrossRef]

A. Jakubowicz, “Revealing process-induced strain fields in GaAs/AlGaAs lasers via electron irradiation in a scanning electron microscope,” J. Appl. Phys. 70, 1800–1804 (1991).
[CrossRef]

A. Gupta, G. C. Weatherly, D. T. Cassidy, D. M. Bruce, “Characterization and modeling of the strain fields associated with InGaAs layers on V-grooved InP substrates,” J. Appl. Phys. 82, 6016–6023 (1997).
[CrossRef]

J. Cryst. Growth

J. W. Matthews, A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118–125 (1974).

J. Electrochem. Soc.

K. Kobayashi, Y. Inoue, T. Nishimura, M. Hirayama, Y. Akasaka, T. Kato, “Local-oxidation-induced stress measured by Raman microprobe spectroscopy,” J. Electrochem. Soc. 137, 1987–1989 (1990).
[CrossRef]

J. Lumin.

D. Geroshini, H. Temkin, “Optical properties of III-V strained-layer quantum wells,” J. Lumin. 44, 381–398 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

T. Kobayashi, K. Sugiyama, “Effects of uniaxial stress on the double heterostructure lasers,” Jpn. J. Appl. Phys. 12, 1388–1392 (1973).
[CrossRef]

T. Arakawa, S. Tsukamoto, Y. Nagamune, M. Nishioka, “Fabrication of InGaAs strained quantum wire structures using selective-area-metal-organic chemical vapor deposition growth,” Jpn. J. Appl. Phys. 32, L1377–L1379 (1993).
[CrossRef]

Mater. Sci. Eng. B

D. T. Cassidy, “Spatially resolved and polarization-resolved photoluminescence for the study of dislocations and strain in III-V materials,” Mater. Sci. Eng. B 91-92, 2–9 (2002).
[CrossRef]

A. Jakubowicz, “Material and fabrication-related limitations to high-power operation of GaAs/AlGaAs and InGaAs/AlGaAs laser diodes,” Mater. Sci. Eng. B 44, 359–363 (1997).
[CrossRef]

J.-P. Landesman, “Micro-photoluminescence for the visualization of defects, stress, and temperature profiles in high-power III-V’s devices,” Mater. Sci. Eng. B 91-92, 55–61 (2002).
[CrossRef]

Phys. Rev. Lett.

K. Kash, B. P. Van der Gaag, D. D. Mahony, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of quantum confinement by strain gradients,” Phys. Rev. Lett. 67, 1326–1329 (1991).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

S. C. Jain, M. Willardson, H. Maes, “Stresses and strains in epilayers, stripes, and quantum structures of III-V compound semiconductors,” Semicond. Sci. Technol. 11, 641–671 (1996).
[CrossRef]

M. G. Daly, D. M. Bruce, P. E. Jessop, D. T. Cassidy, D. Yevick, “Metallization stress in weakly guiding InP/InGaAsP waveguides,” Semicond. Sci. Technol. 9, 1382–1390 (1994).
[CrossRef]

E. P. O’Reilly, “Valence band engineering in strained layer structures,” Semicond. Sci. Technol. 4, 121–137 (1989).
[CrossRef]

Sov. J. Quantum Electron.

P. G. Eliseev, B. N. Sverdlov, N. Shokhudzhaev, “Reduction of the threshold current of InGaAsP/InP heterolasers by unidirectional compression,” Sov. J. Quantum Electron. 14, 1120–1121 (1984).
[CrossRef]

Sov. Phys. Solid State

G. E. Pikus, G. L. Bir, “Effect of deformation on the hole energy spectrum of germanium and silicon,” Sov. Phys. Solid State 1, 1502–1517 (1960).

Other

G. C. Osbourn, P. L. Gourley, I. J. Fritz, R. M. Biefeld, L. R. Dawson, T. E. Zipperian, “Principles and applications of semiconductor strained-layer superlattices,” in Semiconductors and Semimetals, R. Dingle, ed. (Academic, San Diego, Calif., 1987), Vol. 24.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1985).

P. Kohnke, ed., ANSYS Theory Reference, Release 5.6 (ANSYS, Inc., Canonsburg, Pa., 1999).

P. D. Colbourne, “Measurement of stresses in III-V semiconductors using the degree of polarization of luminescence,” Ph.D. dissertation (McMaster University, Hamilton, Ontario, 1992).

S. Timoshenko, J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951).

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–164.

K. H. Huebner, E. A. Thornton, T. G. Byrom, The Finite Element Method For Engineers, 3rd ed. (Wiley, New York, 1995), pp. 135–141.

A. D. Prins, D. J. Dunstan, Compliance of InP in Properties of Indium Phosphide EMIS Datareviews Series 6 (Inspec, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of a sample showing the directions of the transmission axis of a polarizer to achieve +1 for measurement of the DOP or the ROP. The view is toward the surface that produces the light.

Fig. 2
Fig. 2

Schematic diagram of (a) the apparatus used to make DOP and ROP measurement and (b) the method used to put a bending moment on the sample. The area around the V groove is enlarged in (b).

Fig. 3
Fig. 3

False color images of the DOP and ROP data and simulations: (a), (b), (i), and (j) are false color images of the difference between the data and the best-fit simulations.

Tables (4)

Tables Icon

Table 1 Elastic Constants in a {110} Plane for InP a

Tables Icon

Table 2 Values of a0 and a1 for an 11-μm-Wide V Groove Etched in a 195-μm-Thick Bar

Tables Icon

Table 3 Calibration Constants C and a̅1 as Determined for Fits of Strain to the DOP and the ROP

Tables Icon

Table 4 Calibration Constants C σ and 1 as Determined for Fits of Stress to the DOP and the ROP a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

DOPy=0Lx-LzRd0Lx+LzRd,
DOPy=-Cxx-zz=-C1+νEσxx-σzz,
xx=1Eσxx-νσyy+σzz, xz=12G σxz.
123456=xxyyzz2yz2xz2xy=s11s12s12000s12s11s12000s12s12s11000000s44000000s44000000s66110σxxσyyσzzσyzσxzσxy,
xx=1Exσxx-ν¯xyσyy-ν¯xzσzz, 2xy=σxyGxy,
xx=σxxEx-νxyσyyEy-νxzσzzEz, 2xy=σxyGxy,
DOPy=-Cxx-zz=-C2s11-2s12+s444 σxx-s11-s12σzz,
ROPy=0Lx-LzRd0Lx+LzRd,
ROPy=2Cxz=C1Gxz σxz,
Vs=Lxcos2 θ+Lzsin2 θ×12+2πn=0sin2n+1ωct2n+1,
Vs=Lx+Lz212+2πn=0sin2n+1ωct2n+1+Lx-Lz2cos 2ωmt×12+2πn=0sin2n+1ωct2n+1.
ht=exp-t/τ2τ2-τ11-exp-tτ2-τ1τ1τ2  t0
χD2=i,j wDxi, zjDOPyxi, zj-a0fDxi-a2, zj-a3-a4-a5xi-a6zj2i,j wDxi, zj, χR2=i,j wRxi, zjROPyxi, zj-a01+a1fRxi-a2, zj-a3-a7-a8xi-a9zj2i,j wRxi, zj.
wαxi, zj=1.0+fαxi, zj5002, α=D, R.

Metrics