Abstract

Infrared fiber optic radiometry was used for noncontact thermometry of gray bodies whose temperature was close to room temperature (40–70 °C). We selected three gray bodies, one with high emissivity (ε = 0.97), one with medium emissivity (ε = 0.71), and one with low emissivity (ε = 0.025). We carried out optimization calculations and measurements for a multiband fiber optic radiometer that consisted of a silver halide (AgClBr) infrared-transmitting fiber, a dual-band cooled infrared detector, and a set of 18 narrowband infrared filters that covered the 2–14-μm spectral range. We determined the optimal spectral range, the optimal number of filters to be used, and the optimal chopping scheme. Using these optimal conditions, we performed measurements of the three gray bodies and obtained an accuracy of better than 1 °C for body temperature and for room temperature. An accuracy of 0.03 was obtained for body emissivity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995).
  2. S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 1908–1914 (2002).
    [CrossRef] [PubMed]
  3. S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
    [CrossRef]
  4. Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
    [CrossRef]
  5. J. S. Accetta, D. L. Shumaker, The Infrared & Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).
  6. K. Chrzanowski, M. Szulim, “Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems,” Appl. Opt. 37, 5051–5057 (1998).
    [CrossRef]
  7. K. Chrzanowski, “Comparison of shortwave and longwave measuring thermal imaging systems,” Appl. Opt. 34, 2888–2897 (1995).
    [CrossRef] [PubMed]
  8. K. Chrzanowski, “Experimental verification of theory of influence from measurement conditions and system parameters on temperature measurement accuracy with IR systems,” Appl. Opt. 35, 3540–3547 (1996).
    [CrossRef] [PubMed]
  9. D. F. Joseph, R. J. Barry, “Temperature measurement validity for dual spectral-band radiometric techniques,” Opt. Eng. 28, 1255–1259 (1989).
  10. V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
    [CrossRef]
  11. M. Saito, T. Inoue, “Infrared optical switch by the use of optically excited free carriers in semiconductors,” Rev. Sci. Instrum. 71, 2134–2135 (2000).
    [CrossRef]
  12. A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
    [CrossRef]
  13. J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1996).
    [CrossRef]

2002

2000

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

M. Saito, T. Inoue, “Infrared optical switch by the use of optically excited free carriers in semiconductors,” Rev. Sci. Instrum. 71, 2134–2135 (2000).
[CrossRef]

1998

1997

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

1996

K. Chrzanowski, “Experimental verification of theory of influence from measurement conditions and system parameters on temperature measurement accuracy with IR systems,” Appl. Opt. 35, 3540–3547 (1996).
[CrossRef] [PubMed]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

1995

1989

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

D. F. Joseph, R. J. Barry, “Temperature measurement validity for dual spectral-band radiometric techniques,” Opt. Eng. 28, 1255–1259 (1989).

Accetta, J. S.

J. S. Accetta, D. L. Shumaker, The Infrared & Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

Barkay, N.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Barry, R. J.

D. F. Joseph, R. J. Barry, “Temperature measurement validity for dual spectral-band radiometric techniques,” Opt. Eng. 28, 1255–1259 (1989).

Buys, B.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Chrzanowski, K.

Dankner, Y.

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Dennis, J. E.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

Eyal, O.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 1908–1914 (2002).
[CrossRef] [PubMed]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Inoue, T.

M. Saito, T. Inoue, “Infrared optical switch by the use of optically excited free carriers in semiconductors,” Rev. Sci. Instrum. 71, 2134–2135 (2000).
[CrossRef]

Joseph, D. F.

D. F. Joseph, R. J. Barry, “Temperature measurement validity for dual spectral-band radiometric techniques,” Opt. Eng. 28, 1255–1259 (1989).

Katzir, A.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 1908–1914 (2002).
[CrossRef] [PubMed]

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Levite, A.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Mordon, S. R.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Moschetto, Y.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Moser, F.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Saar, A.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Sade, S.

Saito, M.

M. Saito, T. Inoue, “Infrared optical switch by the use of optically excited free carriers in semiconductors,” Rev. Sci. Instrum. 71, 2134–2135 (2000).
[CrossRef]

Scharf, V.

S. Sade, O. Eyal, V. Scharf, A. Katzir, “Fiber optic infrared radiometer for accurate temperature measurements,” Appl. Opt. 41, 1908–1914 (2002).
[CrossRef] [PubMed]

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Schnabel, R. B.

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

Shnitzer, I.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

Shumaker, D. L.

J. S. Accetta, D. L. Shumaker, The Infrared & Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

Szulim, M.

Appl. Opt.

Appl. Phys. Lett.

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the true temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Fiber Integr. Opt.

A. Saar, N. Barkay, F. Moser, I. Shnitzer, A. Levite, A. Katzir, “Mechanical and optical properties of silver halide infrared transmitting fibers,” Fiber Integr. Opt. 16, 27–54 (1997).
[CrossRef]

J. Lightwave Technol.

S. R. Mordon, B. Buys, Y. Moschetto, “Zirconium fluoride glass fiber radiometer for low temperature measurements,” J. Lightwave Technol. 7, 1097–1100 (1989).
[CrossRef]

Opt. Eng.

D. F. Joseph, R. J. Barry, “Temperature measurement validity for dual spectral-band radiometric techniques,” Opt. Eng. 28, 1255–1259 (1989).

Rev. Sci. Instrum.

M. Saito, T. Inoue, “Infrared optical switch by the use of optically excited free carriers in semiconductors,” Rev. Sci. Instrum. 71, 2134–2135 (2000).
[CrossRef]

Other

J. E. Dennis, R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, N.J., 1996).
[CrossRef]

M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995).

J. S. Accetta, D. L. Shumaker, The Infrared & Electro-Optical System Handbook (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Multiband fiber optic radiometer.

Fig. 2
Fig. 2

Results of the simulations for the two models: relative errors of the three unknowns as a function of the spectral range for a body of high emissivity, ε = 0.97.

Fig. 3
Fig. 3

Results of the simulations for the two models: relative errors of the three unknowns as a function of the spectral range for a body of medium emissivity, ε = 0.8.

Fig. 4
Fig. 4

Results of the simulations for the two models: relative errors of the three unknowns as a function of the spectral range for a body of low emissivity, ε = 0.2.

Fig. 5
Fig. 5

Results of the simulations: relative errors for the three unknowns as a function of the number of bands, starting from the short to the long wavelengths.

Fig. 6
Fig. 6

Results of the simulations: relative errors for the three unknowns as a function of the number of bands, starting from the long to the short wavelengths.

Fig. 7
Fig. 7

Results of the measurements for the two models: relative errors of the three unknowns as a function of spectral range for a body of high emissivity, ε = 0.97.

Fig. 8
Fig. 8

Results of the measurements for the two models: relative errors of the three unknowns as a function of spectral range for a body of medium emissivity, ε = 0.71.

Fig. 9
Fig. 9

Results of the measurements for the two models: relative errors of the three unknowns as a function of spectral range for a body of low emissivity, ε = 0.025.

Fig. 10
Fig. 10

Results of the measurements: relative errors of the three unknowns as a function of the number of bands, from the short to the long wavelengths.

Fig. 11
Fig. 11

Results of the measurements: relative errors of the three unknowns as a function of the number of bands, from the long to the short wavelengths.

Tables (4)

Tables Icon

Table 1 Peak Wavelength, Maximum Transmittance, and FWHM of Each Spectral Band

Tables Icon

Table 2 Results of Simulation for the Two Models: Relative Errors of the Three Unknowns at the Optimal Spectral Range

Tables Icon

Table 3 Results of Measurements for the Two Models: Relative Errors of the Three Unknowns at the Optimal Spectral Range

Tables Icon

Table 4 Results of Measurements: Relative Errors of the Three Unknowns for the Measurements at the Highest Accuracy

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SΔλi=AiΔλiεibodyλWbbλλ, Tbody+1-εibodyλWbbλλ, TroomFλdλ+BiΔλi,
SΔλi=AiΔλiεibodyλWbbλTbody, λ-1-εibodyλWbbλTroom, λ-εichλWbbλTch, λ-1-εichλWbbλTroom, λFλdλ,
SΔλi=AiΔλiεibodyλWbbλTbody, λ-WbbλTroom, λFλdλ.
SΔλ1=A1×fTbody, ε1body, Troom+B1Δλ1,SΔλ2=A2×fTbody, ε2body, Troom+B2Δλ2,SΔλN=AN×fTbody, εNbody, Troom+BNΔλN.
ΔXrel error=1Ln=1LXncalc-XnrealXnreal21/2%.

Metrics