Abstract

Image transfer in linear and curvilinear arrays of glass spheres was studied experimentally and discussed analytically. Glass spheres of 5 and 1 mmØ were used. The image pattern was successfully transferred through the sphere array but was highly deformed because of aberrations of the spheres’ lenses. However, we suppressed the aberrations significantly by filling the spaces between the spheres with dielectric liquid and covering both ends of the tube that contained the sphere arrays with flat plates.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Huang, S. Morita, “670-nm Laser light propagation characteristics of 10–1 μmØ polystyrene micro sphere array,” Jpn. J. Appl. Phys. 40, L1320–L1322 (2001).
    [CrossRef]
  2. T. Morokuma, Endoscope Technology (Shokabo, Tokyo, 1999; in Japanese).
  3. F. Huang, H. Ebihara, S. Morita, “Light propagation characteristics of micro-sphere array,” in Optoelectronic Materials and Devices II, Y.-K. Su, P. Bhattacharya, eds., Proc. SPIE4078, 247–253 (2000).
    [CrossRef]

2001

F. Huang, S. Morita, “670-nm Laser light propagation characteristics of 10–1 μmØ polystyrene micro sphere array,” Jpn. J. Appl. Phys. 40, L1320–L1322 (2001).
[CrossRef]

Ebihara, H.

F. Huang, H. Ebihara, S. Morita, “Light propagation characteristics of micro-sphere array,” in Optoelectronic Materials and Devices II, Y.-K. Su, P. Bhattacharya, eds., Proc. SPIE4078, 247–253 (2000).
[CrossRef]

Huang, F.

F. Huang, S. Morita, “670-nm Laser light propagation characteristics of 10–1 μmØ polystyrene micro sphere array,” Jpn. J. Appl. Phys. 40, L1320–L1322 (2001).
[CrossRef]

F. Huang, H. Ebihara, S. Morita, “Light propagation characteristics of micro-sphere array,” in Optoelectronic Materials and Devices II, Y.-K. Su, P. Bhattacharya, eds., Proc. SPIE4078, 247–253 (2000).
[CrossRef]

Morita, S.

F. Huang, S. Morita, “670-nm Laser light propagation characteristics of 10–1 μmØ polystyrene micro sphere array,” Jpn. J. Appl. Phys. 40, L1320–L1322 (2001).
[CrossRef]

F. Huang, H. Ebihara, S. Morita, “Light propagation characteristics of micro-sphere array,” in Optoelectronic Materials and Devices II, Y.-K. Su, P. Bhattacharya, eds., Proc. SPIE4078, 247–253 (2000).
[CrossRef]

Morokuma, T.

T. Morokuma, Endoscope Technology (Shokabo, Tokyo, 1999; in Japanese).

Jpn. J. Appl. Phys.

F. Huang, S. Morita, “670-nm Laser light propagation characteristics of 10–1 μmØ polystyrene micro sphere array,” Jpn. J. Appl. Phys. 40, L1320–L1322 (2001).
[CrossRef]

Other

T. Morokuma, Endoscope Technology (Shokabo, Tokyo, 1999; in Japanese).

F. Huang, H. Ebihara, S. Morita, “Light propagation characteristics of micro-sphere array,” in Optoelectronic Materials and Devices II, Y.-K. Su, P. Bhattacharya, eds., Proc. SPIE4078, 247–253 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup of the array of spherical glass lenses: (a) 5-mmØ spheres, (b) 1-mmØ spheres.

Fig. 2
Fig. 2

Photographs of transferred images in linear arrays of 5-mmØ glass spheres: (a) one, (b) two, (c) three, (d) four and (e) five spheres.

Fig. 3
Fig. 3

(a) Photograph of a curvilinear array of 5-mmØ spherical glass lenses at a radius of curvature of 20 mm, (b) transferred image in the array.

Fig. 4
Fig. 4

Photograph of a curvilinear spherical 1-mmØ glass array in a silica tube.

Fig. 5
Fig. 5

Photograph of an object pattern for an array of 1-mmØ spheres.

Fig. 6
Fig. 6

Photographs of transferred images of an array of 1-mmØ glass spheres: (a) five-sphere linear array, (b) six-sphere curvilinear array at a radius of curvature of 5 mm.

Fig. 7
Fig. 7

Photographs of transferred images of a linear array of three 5-mmØ glass spheres in (a) air, (b) water, and (c) chlorobenzene.

Fig. 8
Fig. 8

Illustration of light transmission in a single sphere.

Fig. 9
Fig. 9

Illustration of light transmission in a linear array of spheres.

Fig. 10
Fig. 10

Illustration of light transmission in a curvilinear array of spheres.

Fig. 11
Fig. 11

Illustration of propagation of a light bundle in a curvilinear array of spheres.

Tables (1)

Tables Icon

Table 1 Conditions of Transferred Images

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin θi/sin θ0=n2/n1,
sin θi/sin θ0=n2/n1,
sinπ-θi/l+r=sin α/r,
sinπ-θi/l+r=sin α/r.
tan θ0=sin ½δ/n-cos ½δ.
tan θ0=r/R/n-1-r/R21/2.

Metrics