Abstract

Prototype devices capable of variable attenuation at a fixed wavelength, wavelength tuning at a constant attenuation, and combinations of these spectral characteristics are demonstrated in CO2 laser-induced long-period fiber gratings (LPFGs). These devices are based on controlled flexure by means of a piezoceramic platform. CO2 laser-induced LPFG characteristics along with the fabrication and testing processes of these gratings are discussed. Devices with a optical attenuation of 13 dB and a wavelength tuning of 7 nm are reported.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
    [CrossRef]
  2. K. Hirabayashi, M. Wada, C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt. 40, 3509–3517 (2001).
    [CrossRef]
  3. X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
    [CrossRef]
  4. N. A. Riza, Z. Yaqoob, “Submicrosecond speed variable optical attenuator using acoustooptics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
    [CrossRef]
  5. M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
    [CrossRef]
  6. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  7. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
    [CrossRef] [PubMed]
  8. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
    [CrossRef]
  9. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
    [CrossRef]
  10. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
    [CrossRef]
  11. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
    [CrossRef]
  12. D. D. Davis, “Long-period fiber gratings fabricated with focused CO2 laser pulses,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Georgia, 1999).
  13. H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
    [CrossRef]
  14. H. S. Ryu, Y. Park, S. T. Oh, Y. Chung, D. Y. Kim, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
    [CrossRef] [PubMed]
  15. G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
    [CrossRef]
  16. R. F. Hellbaum, R. G. Bryant, R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent5,632,841 (27May1997).
  17. B. L. Bachim, T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).
    [CrossRef]

2003 (1)

2002 (3)

B. L. Bachim, T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).
[CrossRef]

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

2001 (3)

2000 (1)

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

1999 (2)

S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

1997 (1)

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

1996 (2)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef] [PubMed]

Amano, C.

Anemogiannis, E.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Bachim, B. L.

B. L. Bachim, T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).
[CrossRef]

Bayon, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Bennion, I.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Bergano, N. S.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Braiwish, M. I.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Bryant, R. G.

R. F. Hellbaum, R. G. Bryant, R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent5,632,841 (27May1997).

Chang, C. C.

H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Chung, Y.

Davidson, C. R.

Davis, D. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

D. D. Davis, “Long-period fiber gratings fabricated with focused CO2 laser pulses,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Georgia, 1999).

Douay, M.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Duhem, O.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Fox, R. L.

R. F. Hellbaum, R. G. Bryant, R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent5,632,841 (27May1997).

Garrett, B. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Gaylord, T. K.

B. L. Bachim, T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

Glytsis, E. N.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

Hellbaum, R. F.

R. F. Hellbaum, R. G. Bryant, R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent5,632,841 (27May1997).

Henninot, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Hirabayashi, K.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef] [PubMed]

Kim, D. Y.

Kurkov, A. S.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Lee, S. -S.

S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
[CrossRef]

Leleu, B.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Liu, A. Q.

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

Liu, Y.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Lu, C.

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

Mughal, M. J.

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

Oh, S. T.

Park, Y.

Patrick, H. J.

H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Pedrazzani, J. R.

Rivoallan, L.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Riza, N. A.

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Submicrosecond speed variable optical attenuator using acoustooptics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

Ryu, H. S.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Son, Y. -S.

S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
[CrossRef]

Tang, D. Y.

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, M. I. Braiwish, E. N. Glytsis, E. Anemogiannis, “Tuning, attenuating, and switching by controlled flexure of long-period fiber gratings,” Opt. Lett. 26, 61–63 (2001).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Vohra, S. T.

H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Wada, M.

Williams, J. A. R.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Yaqoob, Z.

N. A. Riza, Z. Yaqoob, “Submicrosecond speed variable optical attenuator using acoustooptics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

Yoo, T. -K.

S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
[CrossRef]

Zhang, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

Zhang, X. M.

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (5)

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, “MEMS variable optical attenuator using low driving voltage for DWDM systems,” Electron. Lett. 38, 382–383 (2002).
[CrossRef]

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, L. Rivoallan, “Long period fiber grating as a wavelength selective polarisation element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. C. Mettler, “CO2 laser-induced long-period fiber gratings: spectral characteristics, cladding modes and polarisation independence,” Electron. Lett. 34, 1416–1417 (1998).
[CrossRef]

H. J. Patrick, C. C. Chang, S. T. Vohra, “Long-period fiber gratings for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

G. D. VanWiggeren, T. K. Gaylord, D. D. Davis, E. Anemogiannis, B. D. Garrett, M. I. Braiwish, E. N. Glytsis, “Axial rotation dependence of resonances in curved CO2-laser induced long-period fiber gratings,” Electron. Lett. 36, 1354–1355 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” IEEE J. Sel. Top. Quantum Electron. 5, 1373–1378 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. -S. Lee, Y. -S. Son, T. -K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photon. Technol. Lett. 11, 590–592 (1999).
[CrossRef]

N. A. Riza, Z. Yaqoob, “Submicrosecond speed variable optical attenuator using acoustooptics,” IEEE Photon. Technol. Lett. 13, 693–695 (2001).
[CrossRef]

M. J. Mughal, N. A. Riza, “Compact acoustooptic high-speed variable attenuator for high-power applications,” IEEE Photon. Technol. Lett. 14, 510–512 (2002).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

B. L. Bachim, T. K. Gaylord, “Automated flexure testing of axially rotated optical fiber gratings,” Rev. Sci. Instrum. 73, 3454–3457 (2002).
[CrossRef]

Other (2)

R. F. Hellbaum, R. G. Bryant, R. L. Fox, “Thin layer composite unimorph ferroelectric driver and sensor,” U.S. Patent5,632,841 (27May1997).

D. D. Davis, “Long-period fiber gratings fabricated with focused CO2 laser pulses,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Georgia, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fabrication apparatus for writing LPFGs by CO2 laser exposure.

Fig. 2
Fig. 2

Diagram of flexed LPFG: R, radius of curvature, C, curvature.10

Fig. 3
Fig. 3

LPFG testing configuration.

Fig. 4
Fig. 4

Testing apparatus for LPFGs.

Fig. 5
Fig. 5

LPFG prototype device.

Fig. 6
Fig. 6

Prototype device 1 with variable attenuation from -17 to -4dB at a constant wavelength λ = 1393 nm. Voltage varied from 150 to -450 V as shown.

Fig. 7
Fig. 7

Prototype device 2 featuring wavelength tuning at constant attenuation. The device has wavelength tuning at 7 nm from λ = 1533 to 1540 nm at a constant attenuation of 30 dB. Voltage varied from 300 to 0 V in steps of 50 V.

Fig. 8
Fig. 8

Prototype device 3 featuring combination of variable attenuation and optical tunable filtering. The device has wavelength tuning from λ = 1375.7 to 1382.7 nm with variable attenuation from -17.7 to 31.5 dB. Voltage varied from 300 to –100 V in steps of 100 V.

Metrics