Abstract

We demonstrate an original solution to obtain a single-frequency ring laser coupled to an external passive nonresonant ring cavity, which plays the role of an optical diode. This system provides more output power than systems with an intracavity unidirectional device. To the best of our knowledge, this work marks the first demonstration of a unidirectional planar ring laser at 1.3 μm. Using 12 W at 797 nm to pump a Nd:YLF laser, combined with intracavity second-harmonic generation, we achieve yields of 440 mW at 661.3 nm and 340 mW at 656.0 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).
  2. G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
    [CrossRef]
  3. S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.
  4. Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
    [CrossRef]
  5. Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
    [CrossRef] [PubMed]
  6. T. F. Johnston, R. H. Brady, W. Proffitt, “Powerful single-frequency ring dye laser spanning the visible spectrum,” Appl. Opt. 21, 2307–2316 (1982).
    [CrossRef] [PubMed]
  7. F. Biraben, “Efficacité des systèmes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356 (1979).
    [CrossRef]
  8. T. J. Kane, R. L. Byer, “Monolithic, unidirectional, single-frequency mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  9. W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
    [CrossRef]
  10. L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 534.
  12. A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mide locking and cavity dumping,” IEEE J. Quantum Electron. 9, 247–250 (1973).
    [CrossRef]
  13. P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422–440 (1972).
    [CrossRef]
  14. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  15. K. I. Martin, A. Clarkson, D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22, 375–377 (1997).
    [CrossRef] [PubMed]

2003 (2)

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

2000 (1)

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

1999 (1)

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

1997 (1)

1991 (1)

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

1985 (1)

1982 (1)

1980 (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

1979 (1)

F. Biraben, “Efficacité des systèmes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356 (1979).
[CrossRef]

1976 (1)

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

1973 (1)

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mide locking and cavity dumping,” IEEE J. Quantum Electron. 9, 247–250 (1973).
[CrossRef]

1972 (1)

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422–440 (1972).
[CrossRef]

Badr, T.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Balembois, F.

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Barger, R. L.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Bender, P. L.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Biraben, F.

F. Biraben, “Efficacité des systèmes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356 (1979).
[CrossRef]

Boshier, M. G.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Brady, R. H.

Burrows, S. A.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Byer, R. L.

Clarkson, A.

Clarkson, W. A.

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Dirscherl, J.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

Fornasiero, L.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Garstang, R. H.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Georges, P.

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Guérandel, S.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Hall, J. L.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Hanna, D. C.

K. I. Martin, A. Clarkson, D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22, 375–377 (1997).
[CrossRef] [PubMed]

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Himbert, M. E.

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Hinds, E. A.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Huber, G.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Johnston, T. F.

Juncar, P.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Kane, T. J.

Kellner, T.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Kück, S.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Lison, F.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Louyer, Y.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Martin, K. I.

Meyn, J. P.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Möbert, P. E.-A.

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Pichanick, F. M. J.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Plimmer, M. D.

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

Y. Louyer, F. Balembois, M. D. Plimmer, P. Georges, P. Juncar, M. E. Himbert, “Nd:YLF laser at 1.3 μm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42, 4867–4870 (2003).
[CrossRef] [PubMed]

Proffitt, W.

Siegman, A. E.

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mide locking and cavity dumping,” IEEE J. Quantum Electron. 9, 247–250 (1973).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 534.

Smith, P. W.

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422–440 (1972).
[CrossRef]

Smith, W. W.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Uhlenberg, G.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

Walther, H.

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

West, J. B.

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

Appl. Opt. (2)

Appl. Phys. B (1)

L. Fornasiero, T. Kellner, S. Kück, J. P. Meyn, P. E.-A. Möbert, G. Huber, “Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4 and YLiF4,” Appl. Phys. B 68, 67–72 (1999).
[CrossRef]

Bull. Am. Phys. Soc. (1)

P. L. Bender, J. L. Hall, R. H. Garstang, F. M. J. Pichanick, W. W. Smith, R. L. Barger, J. B. West, “Candidates for two-photon optical frequency standards,” Bull. Am. Phys. Soc. 21, 599 (1976).

IEEE J. Quantum Electron. (1)

A. E. Siegman, “An antiresonant ring interferometer for coupled laser cavities, laser output coupling, mide locking and cavity dumping,” IEEE J. Quantum Electron. 9, 247–250 (1973).
[CrossRef]

Opt. Commun. (4)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Y. Louyer, F. Balembois, M. D. Plimmer, T. Badr, P. Georges, P. Juncar, M. E. Himbert, “Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock,” Opt. Commun. 217, 357–362 (2003).
[CrossRef]

W. A. Clarkson, D. C. Hanna, “Acousto-optically induced unidirectional single mode operation of a Q-switched Nd:YAG ring laser,” Opt. Commun. 81, 375–378 (1991).
[CrossRef]

F. Biraben, “Efficacité des systèmes unidirectionnels utilisables dans les lasers en anneau,” Opt. Commun. 29, 353–356 (1979).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

G. Uhlenberg, J. Dirscherl, H. Walther, “Magneto-optical trapping of silver atoms,” Phys. Rev. A 62, 0634041–0634044 (2000).
[CrossRef]

Proc. IEEE (1)

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422–440 (1972).
[CrossRef]

Other (2)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 534.

S. A. Burrows, S. Guérandel, E. A. Hinds, F. Lison, M. G. Boshier, “Progress towards a precise measurement of the He+ 2S Lamb shift,” in The Hydrogen Atom: Precision Physics of Simple Atomic Systems, S. G. Karshenboim, F. S. Pavone, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 2001), pp. 303–313.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Six-mirror cavity reinjected by use of a passive nonresonant cavity formed by M5, M6, and M7 and the output coupler OC (T = 2%). All other mirrors have R max at 1.3 μm. For SHG, a BBO crystal can be placed between M3 and M4. FR2, 50° Faraday rotator; E, solid etalon (0.1 mm). Photodiodes A, main cavity clockwise power; B, external (clockwise); C, main (counterclockwise); PZT1 and PZT2, piezoelectric transducers; FP, Fabry-Perot spectrum analyzer; WM, wavemeter; λ/2, half-wave plate.

Fig. 2
Fig. 2

Passive output powers from the main cavity as a function of time: A, clockwise; C, counterclockwise. The glitches at the 0.1% level are due to current instabilities in the pump diode power supply.

Fig. 3
Fig. 3

Outputs from the main and reinjecting cavities as the length of the latter is varied using PZT: A, main (clockwise); B, reinjecting (clockwise); C, main (residual counterclockwise). Variations in A and B are due to polarization effects.14 The glitches in C arise from pump diode power supply fluctuations.

Fig. 4
Fig. 4

SHG yields [P(2ω)] versus pump power at λ p = 797 nm. Inset: Fabry-Perot transmission at 1.322 μm, confirming single-mode generation of 661.3 nm.

Metrics