Abstract

Holographic memory encrypted by an optical random-phase key and decrypted by either the original phase key or a duplicate key is proposed and demonstrated. The duplicate key is made by recording the encryption wave front with angle multiplexing during writing of the hologram. The amount of three-dimensional shifting that is tolerable in the duplicate key is analyzed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  2. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  3. C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  4. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–995 (1994).
    [CrossRef] [PubMed]
  5. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  6. C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
    [CrossRef]
  7. J. T. LaMacchia, D. L. White, “Coded multiple exposure holograms,” Appl. Opt. 7, 91–94 (1968).
    [CrossRef] [PubMed]
  8. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  9. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  10. C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
    [CrossRef]
  11. C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
    [CrossRef]
  12. C. C. Sun, W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
    [CrossRef]
  13. C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
    [CrossRef]
  14. C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
    [CrossRef]

2003 (1)

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

2001 (2)

C. C. Sun, W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

2000 (1)

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

1996 (1)

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

1995 (3)

1994 (1)

1993 (1)

1992 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

1968 (1)

Barbastathis, G.

Bashaw, M. C.

Chang, J. Y.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Chang, M. W.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Chang, W.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Chiou, A. E. T.

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

Curtis, K.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
[CrossRef]

Heanue, J. F.

Hesselink, L.

Javidi, B.

LaMacchia, J. T.

Levene, M.

Leyva, V.

Mok, F. H.

Muller, K.-O.

C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
[CrossRef]

Ou Yang, Y.

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Réfrégier, P.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Su, W. C.

C. C. Sun, W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Sun, C. C.

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Tschudi, T.

C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
[CrossRef]

Tsou, R. H.

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Visinka, F.

C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
[CrossRef]

Wang, B.

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

White, D. L.

Yariv, A.

Appl. Opt. (3)

Opt. Commun. (3)

C. C. Sun, W. C. Su, B. Wang, A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209–224 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ou Yang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Eng. (1)

C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184–1185 (2003).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang, M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551–1561 (1996).
[CrossRef]

Other (1)

C. Denz, K.-O. Muller, F. Visinka, T. Tschudi, “Digital volume holographic data storage using phase-coded holographic memory system,” in Advanced Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Itasan, H. J. Coufal, G. T. Sincerbox, eds., Proc. SPIE3802, 142–147 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the security hologram and setup for generation of the holographic decryption key: M1–M5, mirrors; BS1, BS2, beam splitters; SF, spatial filter; L1–L4, lenses; GG, ground glass; P, pattern.

Fig. 2
Fig. 2

(a) Diffraction images decrypted by use of the holographic decryption key. (b) Diffraction images decrypted by use of another, copied holographic decryption key. (c) Diffraction images decrypted by use of the original ground glass. The VHOE in the system was replaced with another phase-compensation plate.

Fig. 3
Fig. 3

The diffraction wave from the VHOE can be decomposed into numerous point sources. Each point source generates a spherical wave with a specific initial phase and a finite NA s .

Fig. 4
Fig. 4

Results of experimental measurements and simulation of the relationship between diffraction intensity and displacement of the VHOE.

Fig. 5
Fig. 5

Results of simulation of the influence of the correlation length of a phase mask on the shifting tolerance of a VHOE.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Wx, y=-d/2d/2-d/2d/2 Uiu, vexpj k2zx-u2+y-v2dudv,
Uiu, v=1Mg U0uMg, vMghu, v,
U0u, v=m=-NNn=-NNrectu-mww×rectv-nwwexpi2πϕmnu, v,
Rx, y=-d/2d/2-d/2d/2 Uiu-Δx, vexpj k2zx-u+Δx2+y-v2dudv.
I=-l/2l/2Rx, yW*x, yPdx2,
IΔx  x=-l/2l/2v=-d/2-d/2u=-d/2d/2U0u-Δx, vhu-Δx, vexpj k2zx-u+Δx2+y-v2v=-d/2-d/2u=-d/2d/2U0u, vhu, v*exp-j k2zx-u2+y-v22.
IΔy  x=-l/2l/2v=-d/2-d/2u=-d/2d/2U0u, v-Δyhu, v-Δyexpj k2zx-u2+y-v+Δy2v=-d/2-d/2u=-d/2d/2U0u, vhu, v* exp-j k2zx-u2+y-v22,
IΔz  x=-l/2-l/2v=-d/2-d/2u=-d/2d/2×U0u, vhu, vexpjkx-u2+y-v2+z+Δz21/2×v=-d/2-d/2u=-d/2d/2U0u, vhu, v* exp-jkx-u2+y-v2+z21/22.

Metrics