Abstract

A technique is described for holographically recording nonrigid objects by scanning the picture beam in a small, bright spot across the object in a series of short exposures. The reference beam is incident across the entire recording medium during each exposure. This technique can freeze the motion of objects subject to ambient forcings, such as acoustic vibrations. Experiments are described in support of this method. Exposures are in the 1- to 10-ms range with 100 separate object regions. An analysis of certain factors affecting image quality, such as diffraction efficiency, is also presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Powell, K. A. Stetson, “Interferometric vibration analysis by wave-front reconstruction,” J. Opt. Soc. Am. 55, 1593–1598 (1965).
    [Crossref]
  2. R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
    [Crossref]
  3. J. C. Palais, “Scanned beam holography,” Appl. Opt. 9, 709–711 (1970).
    [Crossref] [PubMed]
  4. J. C. Palais, I. C. Vella, “Some aspects of scanned reference beam holography,” Appl. Opt. 11, 481–482 (1972).
    [Crossref] [PubMed]
  5. T. Sh. Imedadze, Sh. D. Kakichashvili, “Scanning method of receiving high-effective reflective holograms on bichromate gelatine,” in Three Dimensional Holography: Science, Culture, Education, T. H. Jeong, V. B. Markov, eds., Proc. SPIE1238, 439–441 (1989).
    [Crossref]
  6. C. S. Vikram, H. Vardhan, “Recording linearity in multiple exposure holography,” Nouv. Rev. Opt. Appl. 3, 185–189 (1972).
    [Crossref]
  7. N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
    [Crossref]
  8. A. A. Friesem, A. Kozma, G. F. Adams, “Recording parameters of spatially modulated coherent wave fronts,” Appl. Opt. 6, 851–856 (1967).
    [Crossref] [PubMed]
  9. J. T. LaMacchia, C. J. Vincellete, “Comparisons of the diffraction efficiency of multiple exposure and single exposure holograms,” Appl. Opt. 7, 1857–1858 (1968).
    [Crossref] [PubMed]
  10. M. Chang, N. George, “Holographic dielectric grating: theory and practice,” Appl. Opt. 9, 713–719 (1970).
    [Crossref] [PubMed]

1975 (1)

N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
[Crossref]

1972 (2)

C. S. Vikram, H. Vardhan, “Recording linearity in multiple exposure holography,” Nouv. Rev. Opt. Appl. 3, 185–189 (1972).
[Crossref]

J. C. Palais, I. C. Vella, “Some aspects of scanned reference beam holography,” Appl. Opt. 11, 481–482 (1972).
[Crossref] [PubMed]

1970 (2)

1968 (1)

1967 (1)

1965 (2)

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

R. L. Powell, K. A. Stetson, “Interferometric vibration analysis by wave-front reconstruction,” J. Opt. Soc. Am. 55, 1593–1598 (1965).
[Crossref]

Adams, G. F.

Briones, R. A.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

Brooks, R. E.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

Chang, M.

Friesem, A. A.

George, N.

N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
[Crossref]

M. Chang, N. George, “Holographic dielectric grating: theory and practice,” Appl. Opt. 9, 713–719 (1970).
[Crossref] [PubMed]

Heflinger, L. O.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

Imedadze, T. Sh.

T. Sh. Imedadze, Sh. D. Kakichashvili, “Scanning method of receiving high-effective reflective holograms on bichromate gelatine,” in Three Dimensional Holography: Science, Culture, Education, T. H. Jeong, V. B. Markov, eds., Proc. SPIE1238, 439–441 (1989).
[Crossref]

Jain, A.

N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
[Crossref]

Kakichashvili, Sh. D.

T. Sh. Imedadze, Sh. D. Kakichashvili, “Scanning method of receiving high-effective reflective holograms on bichromate gelatine,” in Three Dimensional Holography: Science, Culture, Education, T. H. Jeong, V. B. Markov, eds., Proc. SPIE1238, 439–441 (1989).
[Crossref]

Kozma, A.

LaMacchia, J. T.

Melville, R. D. S.

N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
[Crossref]

Palais, J. C.

Powell, R. L.

Stetson, K. A.

Vardhan, H.

C. S. Vikram, H. Vardhan, “Recording linearity in multiple exposure holography,” Nouv. Rev. Opt. Appl. 3, 185–189 (1972).
[Crossref]

Vella, I. C.

Vikram, C. S.

C. S. Vikram, H. Vardhan, “Recording linearity in multiple exposure holography,” Nouv. Rev. Opt. Appl. 3, 185–189 (1972).
[Crossref]

Vincellete, C. J.

Wuerker, R. F.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

Appl. Opt. (5)

Appl. Phys. (1)

N. George, A. Jain, R. D. S. Melville, “Speckle, diffusers and depolarization,” Appl. Phys. 6, 65–70 (1975).
[Crossref]

Appl. Phys. Lett. (1)

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, R. A. Briones, “Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers,” Appl. Phys. Lett. 7, 92–94 (1965).
[Crossref]

J. Opt. Soc. Am. (1)

Nouv. Rev. Opt. Appl. (1)

C. S. Vikram, H. Vardhan, “Recording linearity in multiple exposure holography,” Nouv. Rev. Opt. Appl. 3, 185–189 (1972).
[Crossref]

Other (1)

T. Sh. Imedadze, Sh. D. Kakichashvili, “Scanning method of receiving high-effective reflective holograms on bichromate gelatine,” in Three Dimensional Holography: Science, Culture, Education, T. H. Jeong, V. B. Markov, eds., Proc. SPIE1238, 439–441 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for scanned-picture-beam holography: o, object;s, scanner; P j , picture beam from the jth object region; R, reference beam; f, hologram film plate.

Fig. 2
Fig. 2

Plot of ratio V M j /V S j versus the number of exposures.

Fig. 3
Fig. 3

Setup for recording an object with one exposure and then separately with multiple exposures by means of a scanned picture beam: o, object; s, scanner; m, mirror; l, lens; P j , picture beam from the jth object region; R, reference beam; f, hologram film plate. The lens expands the picture beam to illuminate the entire object to produce a single-exposure hologram. Alternatively, the mirror moves into the beam path to select the scanner and to bypass the lens to make a multiple-exposure recording.

Fig. 4
Fig. 4

Application of scanned-picture-beam holography. (a) Sketch of object with three ground-glass vanes in an aluminum frame. (b) Image from a hologram recorded in one exposure of 310 ms. The middle vane is driven during exposure by a small pusher motor. (c) Image from a hologram recorded in 100 exposures of 1 ms each. Middle-vane movement is identical to that of the single-exposure hologram.

Fig. 5
Fig. 5

Application of scanned-picture-beam holography. (a) Photograph of the objects, which are two small toy balls with plastic flanges. (b) Image from a hologram recorded with one exposure of 1.1 s. (c) Image from a hologram recorded with 100 exposures of 9 ms each.

Fig. 6
Fig. 6

Application of scanned-picture-beam holography showing an image of a live human hand recorded in 100 exposures of 2 ms each.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Etotx, y=TPx, y+Rx, yPx, y+Rx, y*,
ΦSx, y=TSjN PSj+RSjN PSj+RS*,
ΦMx, y=jNTMjPMj+RMPMj+RM*,
ΦSx, y=TSjN |PSj|2+|RS|2+2 jN|PSjRS|cosθSj-ϕ,
ΦMx, y=TMjN |PMj|2+N|RM|2+2 jN|PMjRM|cosθMj-ϕ,
TSjN |PSj|2+|RS|2=TMjN |PMj|2+N|RM|2.
jN |PSj|2=|RS|2,
jN |PMj|2=N|RM|2.
TS|PSj|2=TM|PMj|2,
TS|RS|2=TMN|RM|2.
TS=CTM,
VSj=2|PSjRS|jN |PSj|2+|RS|2TS.
VSjVMj=TS|PSjRS|TM|PMjRM|=N.
η  1/N,
V  η,

Metrics