Abstract

Gated detection of the output of a fiber-optic-coupled radiation dosimeter effectively eliminated the direct contribution of C̆erenkov radiation to the signal. The radiation source was an external beam radiotherapy machine that provided pulses of 6-MeV x rays. Gated detection was used to discriminate the signal collected during the radiation pulses, including C̆erenkov interference, from the signal collected between the radiation pulses due only to phosphorescence from the Cu1+-doped glass detector. Gated detection of the long-lived phosphorescence of the Cu1+-doped glass provided real-time dose measurements that were linear with the absorbed dose and that were accurate for all field sizes studied.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
    [CrossRef]
  2. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
    [CrossRef] [PubMed]
  3. A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
    [CrossRef] [PubMed]
  4. S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
    [CrossRef]
  5. A. S. Beddar, “A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines,” Phys. Med. Biol. 39, 253–263 (1994).
    [CrossRef] [PubMed]
  6. M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
    [CrossRef]
  7. F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
    [CrossRef]
  8. A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
    [CrossRef]
  9. A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
    [CrossRef] [PubMed]
  10. A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
    [CrossRef]
  11. A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
    [CrossRef]
  12. B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
    [CrossRef]
  13. J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
    [CrossRef]
  14. M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
    [CrossRef]
  15. K. J. Jordan, “Evaluation of ruby as a fluorescent sensor for optical fiber-based radiation dosimetry,” in Fluorescence Detection IV, E. Roland Menzel, Abraham Katzir, eds., Proc. SPIE2705, 170–178 (1996).
    [CrossRef]

2003 (1)

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

2002 (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

2001 (3)

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

2000 (1)

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

1999 (1)

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

1996 (1)

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

1994 (1)

A. S. Beddar, “A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines,” Phys. Med. Biol. 39, 253–263 (1994).
[CrossRef] [PubMed]

1993 (1)

S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
[CrossRef]

1992 (3)

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
[CrossRef]

1990 (1)

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Altemus, R.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Arnfield, M. A.

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

Attix, F. H.

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
[CrossRef]

Beddar, A. S.

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

A. S. Beddar, “A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines,” Phys. Med. Biol. 39, 253–263 (1994).
[CrossRef] [PubMed]

S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
[CrossRef]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
[CrossRef]

Borsella, E.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Charon, Y.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Comar, D.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

deBoer, S. F.

S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
[CrossRef]

Falkenstein, P. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Flem, G.

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Gaballa, H. E.

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

Garcia, M. A.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Huston, A. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Ikhlef, A.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

Islam, Q.

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

Jordan, K. J.

K. J. Jordan, “Evaluation of ruby as a fluorescent sensor for optical fiber-based radiation dosimetry,” in Fluorescence Detection IV, E. Roland Menzel, Abraham Katzir, eds., Proc. SPIE2705, 170–178 (1996).
[CrossRef]

Justus, B. L.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Kinsella, T. J.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

Law, S.

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

Leviel, V.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Llopis, J.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Mackie, T. R.

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
[CrossRef]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
[CrossRef] [PubMed]

Mastrippolito, R.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Merritt, C. D.

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Miller, R. W.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Moine, B.

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Ning, H.

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Pain, F.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Paje, S. E.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Parent, C.

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Pawlovich, K. J.

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Pedrini, C.

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Polloni, R.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Pujol, J. F.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Rawlinson, J. A.

S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
[CrossRef]

Rychnovsky, S.

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Schmidt-Ulrich, R.

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

Sibata, C. H.

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

Suchowerska, N.

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

Valentin, L.

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

Villegas, M. A.

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

Zhang, J. C.

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Zwicker, R. D.

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

IEEE Trans. Nucl. Sci. (3)

M. A. Arnfield, H. E. Gaballa, R. D. Zwicker, Q. Islam, R. Schmidt-Ulrich, “Radiation-induced light in optical fibers and plastic scintillators: application to brachytherapy dosimetry,” IEEE Trans. Nucl. Sci. 43, 2077–2084 (1996).
[CrossRef]

F. Pain, R. Mastrippolito, Y. Charon, D. Comar, V. Leviel, J. F. Pujol, L. Valentin, “SIC, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: theoretical considerations and physical characteristics,” IEEE Trans. Nucl. Sci. 47, 25–32 (2000).
[CrossRef]

A. S. Beddar, T. J. Kinsella, A. Ikhlef, C. H. Sibata, “A miniature ‘scintillator-fiberoptic-PMT’ detector system for the dosimetry of small fields in stereotactic radiosurgery,” IEEE Trans. Nucl. Sci. 48, 924–928 (2001).
[CrossRef]

J. Lumin. (1)

M. A. Garcia, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas, R. Polloni, “Luminescence time decay from Cu+ ions in sol-gel coatings,” J. Lumin. 93, 253–259 (2001).
[CrossRef]

J. Phys. Chem. Solids (1)

J. C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, “Optical spectroscopy of monovalent copper-doped borate glass,” J. Phys. Chem. Solids 51, 933–939 (1990).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Remote optical fiber dosimetry,” Nucl. Instrum. Methods Phys. Res. B 184, 55–67 (2001).
[CrossRef]

Phys. Med. Biol. (6)

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations,” Phys. Med. Biol. 37, 1883–1900 (1992).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Water equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements,” Phys. Med. Biol. 37, 1901–1913 (1992).
[CrossRef] [PubMed]

S. F. deBoer, A. S. Beddar, J. A. Rawlinson, “Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry,” Phys. Med. Biol. 38, 945–958 (1993).
[CrossRef]

A. S. Beddar, “A new scintillator detector system for the quality assurance of 60Co and high-energy therapy machines,” Phys. Med. Biol. 39, 253–263 (1994).
[CrossRef] [PubMed]

A. S. Beddar, S. Law, N. Suchowerska, T. R. Mackie, “Plastic scintillation dosimetry: optimization of light collection efficiency,” Phys. Med. Biol. 48, 1141–1152 (2003).
[CrossRef] [PubMed]

A. S. Beddar, T. R. Mackie, F. H. Attix, “Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams,” Phys. Med. Biol. 37, 925–935 (1992).
[CrossRef]

Radiat. Prot. Dosim. (2)

A. L. Huston, B. L. Justus, P. L. Falkenstein, R. W. Miller, H. Ning, R. Altemus, “Optically stimulated luminescent glass optical fiber dosemeter,” Radiat. Prot. Dosim. 101, 23–26 (2002).
[CrossRef]

B. L. Justus, C. D. Merritt, K. J. Pawlovich, A. L. Huston, S. Rychnovsky, “Optically stimulated luminescence dosimetry using doped fused quartz,” Radiat. Prot. Dosim. 84, 189–192 (1999).
[CrossRef]

Other (1)

K. J. Jordan, “Evaluation of ruby as a fluorescent sensor for optical fiber-based radiation dosimetry,” in Fluorescence Detection IV, E. Roland Menzel, Abraham Katzir, eds., Proc. SPIE2705, 170–178 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experiment. The external beam x-ray source (Varian Clinac 600) irradiates the Cu1+-doped quartz dosimeter (1 mm long, 400 μm in diameter) at the end of the optical fiber. A segment of the optical fiber is also exposed. The optical fiber is coupled directly to a photon-counting module. The pulsed output of the photon-counting module is the source signal for a precision 32-bit counter. Trigger pulses from the accelerator, synchronized with the accelerator current, serve as the gate for both the data counter and an additional counter used to measure the duration of each gate pulse and the interval between pulses. The data from the counters are buffered and then analyzed and presented in real time.

Fig. 2
Fig. 2

Luminescence decay of the Cu1+ emission following pulsed excitation (solid curve). For comparison, an 8-μs-wide pulse representing the trigger pulse from the accelerator is shown (dashed line).

Fig. 3
Fig. 3

Dose response curve of the fiber-optic-coupled dosimeter. Measurements were obtained with a 10 cm by 10 cm field and a dose rate of 300 cGy/min. Each point is the average of five measurements.

Fig. 4
Fig. 4

Fiber-optic-coupled dosimeter output as a function of field size. For each measurement a dose of 100 machine units was delivered at a dose rate of 300 cGy/min. Each point represents the average of five measurements. The gated output, representing the phosphorescence detected between radiation pulses, is shown by the solid circles. The ungated output, representing the total signal that is the sum of the phosphorescence signal detected between pulses and the radioluminescence and C̆erenkov emission detected during the radiation pulses, is shown by the solid squares.

Fig. 5
Fig. 5

Fiber-optic-coupled dosimeter output from Fig. 4 normalized to unity for a 10-cm field and compared with the reference ionization chamber output. The reference output, also normalized to unity at a field size of 10 cm, was measured with a National Institute of Standards and Technology-traceable, calibrated ionization chamber and is represented by the crosses. The normalized gated output of the fiber-optic-coupled dosimeter, representing the phosphorescence detected between radiation pulses, is shown by the open circles. The normalized ungated output of the fiber-optic-coupled dosimeter, representing the total signal that is the sum of the phosphorescence signal detected between pulses and the radioluminescence and C̆erenkov emission detected during the radiation pulses, is shown by the open squares.

Metrics