Abstract

A dual-mesh reconstruction method with a depth correction for near-infrared diffused wave imaging with ultrasound localization is demonstrated by use of phantoms and clinical cancer cases. Column normalization is applied to the weight matrix obtained from the Born approximation to correct the depth-dependent problem in the reconstructed absorption maps as well as in the total hemoglobin concentration maps. With the depth correction, more uniform absorption maps for target layers at different depths are obtained from the phantoms, and the correlation between the reconstructed hemoglobin concentration maps of deeply located, large cancers and the histological microvessel density counts are dramatically improved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  2. R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
    [CrossRef] [PubMed]
  3. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  4. X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1998).
    [CrossRef]
  5. C. Matson, H. Liu, “Analysis of the forward problem with diffuse photon density waves in turbid media by use of a diffraction tomography model,” J. Opt. Soc. Am. A 16, 455–466 (1999).
    [CrossRef]
  6. K. Paulsen, H. Jiang, “Spatially varing optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  7. S. Arridge, M. Schweiger, “Photon-measurement density functions, Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  8. S. Arridge, M. Schweiger, “Photon-measurement density functions, Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  9. H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).
  10. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
    [CrossRef]
  11. Q. Zhu, T. Durduran, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
    [CrossRef]
  12. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
    [CrossRef] [PubMed]
  13. Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, X. H. Ding, “Design of near infrared imaging probe with the assistance of ultrasound localization,” Appl. Opt. 40, 3288–3303 (2001).
    [CrossRef]
  14. N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
    [CrossRef]
  15. S. Carraresi, T. S. M. Shatir, F. Martelli, G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622–4632 (2001).
    [CrossRef]
  16. V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
    [CrossRef]
  17. Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).
    [CrossRef] [PubMed]
  18. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
    [PubMed]
  19. Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).
  20. M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
    [CrossRef]
  21. S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
    [CrossRef]
  22. M. Huang, T. Q. Xie, N. G. Chen, Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl. Opt. 42, 4102–4114 (2003).
    [CrossRef] [PubMed]
  23. Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
    [CrossRef]
  24. M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, UK, 1991).
  25. S. Carraresi, T. S. M. Shatir, F. Martelli, G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,” Appl. Opt. 40, 4622–4632 (2001).
    [CrossRef]

2003

2001

2000

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

1999

1998

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1998).
[CrossRef]

1997

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

1995

K. Paulsen, H. Jiang, “Spatially varing optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

S. Arridge, M. Schweiger, “Photon-measurement density functions, Part I: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. Arridge, M. Schweiger, “Photon-measurement density functions, Part II: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

Arridge, S.

Barbour, R. L.

Butler, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Carraresi, S.

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

X. Li, T. Durduran, A. Yodh, B. Chance, D. N. Pattanayak, “Diffraction tomography for biomedical imaging with diffuse-photon density waves,” Opt. Lett. 22, 573–575 (1998).
[CrossRef]

Chen, N. G.

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

M. Huang, T. Q. Xie, N. G. Chen, Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl. Opt. 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, X. H. Ding, “Design of near infrared imaging probe with the assistance of ultrasound localization,” Appl. Opt. 40, 3288–3303 (2001).
[CrossRef]

N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
[CrossRef]

M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
[CrossRef]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Cope, M.

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, UK, 1991).

Dambro, T.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Danen, R. M.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Ding, X. H.

Durduran, T.

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Franceschini, M.

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Guo, P. Y.

Hegde, P.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Holboke, M.

Huang, M.

M. Huang, T. Q. Xie, N. G. Chen, Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl. Opt. 42, 4102–4114 (2003).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
[CrossRef]

Jagjivan, B.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jiang, H.

K. Paulsen, H. Jiang, “Spatially varing optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

Kane, M.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Kashke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kurtzman, S.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).
[CrossRef] [PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Li, X.

Li, X. D.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Liu, H.

Ma, X. H.

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Maier, J. S.

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Martelli, F.

Matson, C.

Moesta, K. T.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Ntziachristos, V.

Q. Zhu, T. Durduran, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Osterberg, U.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

Pattanayak, D. N.

Patterson, M.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

Paulsen, K.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

K. Paulsen, H. Jiang, “Spatially varing optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Pei, Y.

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Piao, D. Q.

Pogue, B.

H. Jiang, K. Paulsen, U. Osterberg, B. Pogue, M. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 2, 253–266 (1995).

Schlag, P. M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schweiger, M.

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Shatir, T. S. M.

Sullivan, D.

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Thayer, W. S.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Walker, S. A.

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Wang, Y.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–341 (1997).
[CrossRef]

Xie, T. Q.

Yan, S. K.

Yao, Y.

Yodh, A.

Yodh, A. G.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Yuan, B.

M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
[CrossRef]

Zaccanti, G.

Zarfos, K.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Zhu, Q.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Q. Zhu, N. G. Chen, S. Kurtzman, “Imaging tumor angiogenesis using combined near infrared diffusive light and ultrasound,” Opt. Lett. 28, 337–339 (2003).
[CrossRef] [PubMed]

M. Huang, T. Q. Xie, N. G. Chen, Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry,” Appl. Opt. 42, 4102–4114 (2003).
[CrossRef] [PubMed]

N. G. Chen, P. Y. Guo, S. K. Yan, D. Q. Piao, Q. Zhu, “Simultaneous near infrared diffusive light and ultrasound imaging,” Appl. Opt. 40, 6367–6380 (2001).
[CrossRef]

Q. Zhu, N. G. Chen, D. Q. Piao, P. Y. Guo, X. H. Ding, “Design of near infrared imaging probe with the assistance of ultrasound localization,” Appl. Opt. 40, 3288–3303 (2001).
[CrossRef]

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Q. Zhu, T. Durduran, M. Holboke, V. Ntziachristos, A. Yodh, “Imager that combines near infrared diffusive light and ultrasound,” Opt. Lett. 24, 1050–1052 (1999).
[CrossRef]

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
[CrossRef]

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

Zhu, W.

Appl. Opt.

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

Q. Zhu, D. Sullivan, B. Chance, T. Dambro, “Combined ultrasound and near infrared diffusive light imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 665–678 (1999).
[CrossRef]

J. Biomed. Opt.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

K. Paulsen, H. Jiang, “Spatially varing optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Neoplasia

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, S. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5, 379–388 (2003).
[PubMed]

Opt. Lett.

Photochem. Photobiol.

R. M. Danen, Y. Wang, X. D. Li, W. S. Thayer, A. G. Yodh, “Regional imager for low resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol. 67, 33–40 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, M. Seeber, P. M. Schlag, M. Kashke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4233 (1998).
[CrossRef]

Other

Q. Zhu, S. Kurtzman, P. Hegde, M. Huang, N. G. Chen, B. Jagjivan, M. Kane, K. Zarfos, “Imaging heterogeneous tumor hemoglobin distributions of advanced breast cancers by optical tomography with ultrasound localization,” Proc. Natl. Acad. Sci. (to be published).

M. Huang, N. G. Chen, B. Yuan, Q. Zhu, “3D simultaneous absorption and scattering coefficient reconstruction for the reflection geometry,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4955, 52–58 (2003).
[CrossRef]

S. Fantini, M. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Photon path distributions in turbid media: applications for imaging in optical tomography,” in Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 340–349 (1995).
[CrossRef]

M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” Ph.D. dissertation (University College London, UK, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sensor distribution of the combined probe. Smaller circles are optical source fiber positions and larger circles are detector fiber positions. An ultrasound probe is located at the center of the combined probe, and the optical source and detector fibers are distributed at the periphery of the ultrasound probe.

Fig. 2
Fig. 2

Comparison of the reconstruction results of a small 1-cm3 cubic target located at (0, -1 cm, 2 cm) inside the Intralipid. (a) B-scan ultrasound image. The dotted markers spaced 1 cm apart on the right side of the image indicate the scale in depth. (b) Optical absorption map (780 nm) obtained from the dual-mesh scheme without the depth correction. (c) Optical absorption map (780 nm) obtained from the dual-mesh scheme with the depth correction. The total imaging volume is 4 cm × 4 cm × 3.75 cm. Slice 1 is the spatial xy image of 4 cm × 4 cm obtained at a depth of 0.75 cm in the Intralipid. Slice 7 is 3.75 cm deep within the Intralipid, and the spacing between slices is 0.5 cm. The unit for the absorption coefficient is cm-1.

Fig. 3
Fig. 3

Comparison of the reconstruction results of a large ellipsoidal phantom target located at (0, 0, 2.5 cm) inside the Intralipid. (a) Optical absorption map (780 nm) obtained from the dual-mesh scheme without the depth correction. (b) Optical absorption map (780 nm) obtained from the modified dual-mesh scheme with the depth correction. The total imaging volume is 8 cm × 8 cm × 3.75 cm. Slice 1 is the spatial xy image of 8 cm × 8 cm obtained at a depth of 0.75 cm in the Intralipid. Slice 7 is 3.75 cm deep within the Intralipid, and the spacing between slices is 0.5 cm. The unit for the absorption coefficient is cm-1.

Fig. 4
Fig. 4

(ID 23P7). (a) Ultrasound image of a 33-year-old woman with a highly suspicious breast lesion located at the twelve o’clock position and measuring 3 cm × 3 cm × 1.5 cm. The ultrasound shows the discrete nodularity of the lesion. (b) Optical absorption map (780 nm) obtained from the dual-mesh scheme without the depth correction. (c) Optical absorption map (780 nm) obtained from the modified dual-mesh scheme with the depth correction. (d) Optical absorption map (830 nm) obtained from the dual-mesh scheme without the depth correction. (e) Optical absorption map (830 nm) obtained from the modified dual-mesh scheme. (f) Total hemoglobin concentration of the lesion obtained from the dual-mesh scheme without the depth correction. (g) Total hemoglobin concentration of the lesion obtained from the modified dual-mesh scheme. The total imaging volume is 8 cm × 8 cm × 3.5 cm. Slice 1 is the spatial xy image of 8 cm × 8 cm obtained at 0.5 cm beneath the skin. Slice 7 is 3.5 cm beneath the skin, toward the chest wall, and the spacing between slices is 0.5 cm. The unit for the absorption coefficient is cm-1, and the unit for the total hemoglobin concentration is μmol/liter.

Tables (3)

Tables Icon

Table 1 Comparison of the Reconstructed μa Values from Phantom Experiment without and with Depth Correction (Small Phantoms)

Tables Icon

Table 2 Comparison of the Reconstructed μa Values from Phantom Experiment without and with Depth Correction (Big Phantoms)

Tables Icon

Table 3 Comparison of the Reconstructed Results of the Two Cancer Cases without and with Depth Correction

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U sc r si ,   r di ,   ω - 1 D Lj   G r vj ,   r di U inc r vj ,   r si × j   Δ μ a r d 3 r + B k   G r vk ,   r di U inc r vk ,   r si × k   Δ μ a r d 3 r ,
[ U sd ] M × 1 = [ W L ,   W B ] M × N [ M L ,   M B ] N × 1 T ,
W L = - 1 D   G r vj ,   r di U inc r vj ,   r si M × N L ,   W B = - 1 D   G r vk ,   r di U inc r vk ,   r si M × N B ,   M L = 1 L   Δ μ a r d 3 r , N L   Δ μ a r d 3 r ,   M B = 1 B   Δ μ a r d 3 r , N B   Δ μ a r d 3 r ,
F j = 1 N j   | W L , B : ,   j | ,   j = 1 ,   2 , N .
G jj = max F p / max F p 0 ,   j p G ij = 0 ,   i j ,   j = 1 ,   2 , N ,
U sd = W L ,   W B G - 1 G M L ,   M B T = W M T ,

Metrics