Abstract

A recently proposed alternative to conventional prism-type electro-optic solid-state deflectors is the single interface deflector. Whereas these deflectors are comparable in performance to prism-type deflectors, they are far simpler in construction. This simplicity obviously has the advantages that it reduces fabrication time and cost and allows for easier optimization. Less obviously, but more advantageously, the simplified geometry provides, for the first time to our knowledge, the ability to achieve a completely solid-state two-dimensional beam deflector. We also detail how the two-dimensional deflector can be further augmented by the addition of intensity and color switching to the device.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
    [CrossRef]
  2. C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
    [CrossRef]
  3. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
    [CrossRef]
  4. A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
    [CrossRef]

2001 (3)

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

1997 (1)

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Bonner, C. L.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Boyland, A. J.

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Brown, C. T. A.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Eason, R. W.

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Hanna, D. C.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Hendricks, J. M.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Mailis, S.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

Meissner, H. E.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Ross, G. W.

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

Shepherd, D. P.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Smith, P. G. R.

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Tropper, A. C.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Warburton, T. J.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, D. C. Hanna, H. E. Meissner, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71, 1139–1141 (1997).
[CrossRef]

Electron. Lett. (1)

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

Opt. Commun. (2)

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two components of the 2D deflector.

Fig. 2
Fig. 2

Schematic of the 2D deflector shown with four spots projected onto a screen. The deflection angles and dimensions are highly exaggerated for clarity.

Fig. 3
Fig. 3

Angular separation of the beam at the CIE standard wavelengths for red, green, and blue light.

Fig. 4
Fig. 4

Schematic of one implementation of a 2D deflector with electrically addressable color and power selection.

Metrics