Abstract

Anisotropic optical coatings offer unique polarizing properties, unmatched by conventional isotropic devices. Here we demonstrate the fabrication of a birefringent omnidirectional reflector, a type of photonic crystal, which exhibits complete reflection of radiation at 1.1 μm for all incidence angles and polarizations. The thin-film device was deposited from electron-beam evaporated silicon, with refractive-index variation arising from atomic-scale porosity created with glancing-angle deposition. Birefringence was found to enhance the performance of the device compared with its isotropic counterpart by enlarging the photonic bandgap region of omnidirectional reflection.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef] [PubMed]
  2. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
    [CrossRef]
  3. D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
    [CrossRef]
  4. M. Deopura, C. K. Ullal, B. Temelkuran, Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett. 26, 1197–1199 (2001).
    [CrossRef]
  5. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, J. Rivory, “Making an omnidirectional reflector,” Appl. Opt. 40, 5056–5063 (2001).
    [CrossRef]
  6. Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
    [CrossRef]
  7. K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
    [CrossRef]
  8. K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
    [CrossRef]
  9. K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
    [CrossRef]
  10. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
    [CrossRef]
  11. W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464–5467 (1999).
    [CrossRef]
  12. S. Kim, C. K. Hwangbo, “Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,” Appl. Opt. 41, 3187–3192 (2002).
    [CrossRef] [PubMed]
  13. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
    [CrossRef]
  14. S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
    [CrossRef]
  15. R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
    [CrossRef]
  16. L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
    [CrossRef]
  17. I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
    [CrossRef]
  18. K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
    [CrossRef]
  19. K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
    [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  21. I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
    [CrossRef]
  22. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  23. E. Cojocaru, “Omnidirectional reflection from Šolc-type anisotropic periodic dielectric structures,” Appl. Opt. 39, 6441–6447 (2000).
    [CrossRef]
  24. E. Cojocaru, “Omnidirectional reflection from finite periodic and Fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films,” Appl. Opt. 41, 747–754 (2002).
    [CrossRef] [PubMed]
  25. K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
    [CrossRef]
  26. P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
    [CrossRef]
  27. O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,” Science 292, 1133–1135 (2001).
    [CrossRef] [PubMed]
  28. O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

2003 (2)

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Kim, C. K. Hwangbo, “Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands,” Appl. Opt. 41, 3187–3192 (2002).
[CrossRef] [PubMed]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

E. Cojocaru, “Omnidirectional reflection from finite periodic and Fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films,” Appl. Opt. 41, 747–754 (2002).
[CrossRef] [PubMed]

O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

2001 (3)

2000 (3)

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

E. Cojocaru, “Omnidirectional reflection from Šolc-type anisotropic periodic dielectric structures,” Appl. Opt. 39, 6441–6447 (2000).
[CrossRef]

1999 (5)

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

W. H. Southwell, “Omnidirectional mirror design with quarter-wave dielectric stacks,” Appl. Opt. 38, 5464–5467 (1999).
[CrossRef]

1998 (2)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[CrossRef]

1997 (4)

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
[CrossRef]

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

1996 (1)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
[CrossRef]

1972 (1)

Abelmann, L.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Berreman, D. W.

Beydaghyan, G.

Bosch, S.

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Brett, M. J.

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

Brown, T.

Brunet-Bruneau, A.

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Canillas, A.

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Charron, E.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Chigrin, D. N.

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Cho, C.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Cojocaru, E.

Deopura, M.

Fan, S.

J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Ferre-Borrull, J.

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Fink, Y.

Fisson, S.

Gallas, B.

Gaponenko, S. V.

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Hnatiw, A. J. P.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
[CrossRef]

I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Hong Wu, Q.

I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Hu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Hwangbo, C. K.

Jeon, H.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Jia, W.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Joannopoulos, J. D.

J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

John, S.

O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,” Science 292, 1133–1135 (2001).
[CrossRef] [PubMed]

Kaminska, K.

Kassam, S.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
[CrossRef]

Kim, S.

Lakhtakia, A.

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
[CrossRef]

Lavrienko, A. V.

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Leinfellner, N.

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Li, Y.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Liu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Lodder, C.

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

MacDonald, R. I.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

McMullin, N. J.

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

Messier, R.

R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Park, Y.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Rivory, J.

Robbie, K.

K. Kaminska, T. Brown, G. Beydaghyan, K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
[CrossRef]

Roh, Y.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Shafai, C.

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Southwell, W. H.

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Sunal, P. D.

R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Sung, M. G.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Temelkuran, B.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Toader, O.

O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,” Science 292, 1133–1135 (2001).
[CrossRef] [PubMed]

Ullal, C. K.

Venugopal, V. C.

R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Vuye, G.

Wang, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Winn, J. N.

J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Woo, J. C.

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Wu, Q. H.

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
[CrossRef]

Xu, C.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Yarotsky, D. A.

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Zi, J.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. A (1)

D. N. Chigrin, A. V. Lavrienko, D. A. Yarotsky, S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Park, Y. Roh, C. Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
[CrossRef]

Electron. Lett. (1)

K. Robbie, A. J. P. Hnatiw, M. J. Brett, R. I. MacDonald, N. J. McMullin, “Inhomogeneous thin film optical filters fabricated using glancing angle deposition,” Electron. Lett. 33, 1213–1214 (1997).
[CrossRef]

J. Appl. Phys. (1)

P. A. Snow, E. K. Squire, P. St. J. Russell, L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

J. Comput. Phys. (1)

I. J. Hodgkinson, S. Kassam, Q. H. Wu, “Eigenequations and compact algorithms for bulk and layered anisotropic optical media: reflection and refraction at a crystal-crystal interface,” J. Comput. Phys. 133, 75–83 (1997).
[CrossRef]

J. Mater. Res. (1)

K. Robbie, C. Shafai, M. J. Brett, “Thin films with nanometer-scale pillar microstructure,” J. Mater. Res. 14, 3158–3163 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (2)

K. Robbie, M. J. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997).
[CrossRef]

R. Messier, V. C. Venugopal, P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000).
[CrossRef]

Nature (2)

K. Robbie, M. J. Brett, A. Lakhtakia, “Chiral sculpted thin films,” Nature 384, 616–616 (1996).
[CrossRef]

K. Robbie, D. J. Broer, M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

O. Toader, S. John, “Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic bandgaps,” Phys. Rev. E 66, 016610/1–18 (2002).

Science (2)

O. Toader, S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic bandgap crystals,” Science 292, 1133–1135 (2001).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Surf. Sci. (1)

S. Bosch, J. Ferre-Borrull, N. Leinfellner, A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Thin Solid Films (1)

L. Abelmann, C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[CrossRef]

Other (3)

I. J. Hodgkinson, Q. Hong Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the deposition geometry of the GLAD process and the resulting film structure. The resulting principal refractive-index axes are indicated by dashed lines.

Fig. 2
Fig. 2

Scanning electron micrograph of the cross section of the 12-layer silicon structure. The brighter, homogenous looking regions correspond to high-density (high-index) layers, and the darker regions correspond to low-density (low-index) layers.

Fig. 3
Fig. 3

Measured transmittance spectra of the birefringent omnidirectional reflector manufactured with GLAD: (a) s-polarized transmittance and (b) p-polarized transmittance as a function of wavelength and incidence angle. The bandgap of approximately zero transmittance at 1100 nm for both polarizations represents omnidirectional reflection.

Fig. 4
Fig. 4

Refractive indices of the omnidirectional stack as determined by variable-angle spectroscopic ellipsometry. (a) Refractive-index variation as a function of distance from the substrate at 1.1 μm; (b) wavelength dependence of the refractive index for the high-index isotropic layers and the low-index birefringent layers.

Fig. 5
Fig. 5

Calculated (dashed curves) and measured (solid curves) transmittance as a function of wavelength for three angles of incidence. The plots corresponding to p polarization also include transmittance calculated for an isotropic device (dotted curve): (a) normal incidence, p and s polarized; (b) 40° incidence, s polarized; (c) 40° incidence, p polarized; (d) 80° incidence, s polarized; (e) 80° incidence, p polarized.

Fig. 6
Fig. 6

Pseudo-band-structure of the birefringent omnidirectional reflector calculated by the eigenequation method. For an infinite structure, electromagnetic modes would exist only in the shaded regions. The white regions represent forbidden states. The s-polarized modes are plotted to the right of the origin, and the p-polarized to the left.

Metrics