Abstract

Hiding image data with a material such as a light-scattering medium is useful as an initial stage of data protection, because the hidden image can be detected only by observation with a specific technique. A light-scattering medium is used to hide the image data, and a low-temporal-coherence interferometer performs the readout processing. A new readout method for detecting pixel values of the image is proposed to overcome spatial variation of the light intensity and distortion of the interference fringes. The introduction of spatial coding further improves the performance by overcoming spatial variations of the light-scattering medium and variations in the reflectance of given pixels.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  2. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  3. R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
    [CrossRef]
  4. N. Towghi, B. Javidi, Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999).
    [CrossRef]
  5. T. Nomura, B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000).
    [CrossRef]
  6. S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
    [CrossRef]
  7. S. Zhang, M. A. Karim, “High-security optical integrated stream ciphers,” Opt. Eng. 38, 20–24 (1999).
    [CrossRef]
  8. P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
    [CrossRef]
  9. G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000).
    [CrossRef]
  10. P. C. Mogensen, J. Glückstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 40, 1226–1235 (2001).
    [CrossRef]
  11. B. Javidi, T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28–30 (2000).
    [CrossRef]
  12. E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).
    [CrossRef]
  13. E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
    [CrossRef]
  14. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  15. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]
  16. O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
    [CrossRef]
  17. T. Sasaki, H. Togo, J. Tanida, Y. Ichioka, “Stream cipher based on pseudorandom number generation with optical affine transformation,” Appl. Opt. 39, 2340–2346 (2000).
    [CrossRef]
  18. R. C. Youngquist, S. Carr, D. N. E. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  19. K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
    [CrossRef]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  21. K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef] [PubMed]
  22. C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31, 6637–6642 (1992).
    [CrossRef] [PubMed]
  23. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  24. Y. Pan, R. Bringruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [CrossRef] [PubMed]
  25. S. C. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared,” Opt. Lett. 20, 2330–2332 (1995).
    [CrossRef] [PubMed]
  26. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  27. S. Bourquin, P. Seitz, R. P. Salathe, “Optical coherent topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
    [CrossRef]
  28. J. Tanida, Y. Ichioka, “Optical logic array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
    [CrossRef]
  29. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
    [CrossRef] [PubMed]

2001

2000

1999

1998

1996

R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
[CrossRef]

1995

1994

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

1987

R. C. Youngquist, S. Carr, D. N. E. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
[CrossRef] [PubMed]

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

1986

1983

Alfano, R. R.

Barry, N. P.

Bashaw, M. C.

Beaurepaire, E.

Blanchot, L.

Boccara, A. C.

Bourquin, S.

Brenner, K.-H.

Bringruber, R.

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chatwin, C.

R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
[CrossRef]

Chiba, K.

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

Dainty, J. C.

Davies, D. N. E.

Engelhardt, R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

French, P. M. W.

Fujimoto, J. G.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fukushima, S.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Glückstad, J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heanue, J. F.

Hee, M. R.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hesselink, L.

Hitzenberger, C. K.

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Huang, A.

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C.

Ichioka, Y.

Javidi, B.

Jones, R.

Joseph, J.

Karim, M. A.

S. Zhang, M. A. Karim, “High-security optical integrated stream ciphers,” Opt. Eng. 38, 20–24 (1999).
[CrossRef]

Kurokawa, T.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Lebec, M.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Luo, Z.

Matoba, O.

Mogensen, P. C.

Noda, J.

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

Nomura, T.

Pan, Y.

Pohit, M.

G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000).
[CrossRef]

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Réfrégier, P.

Rosperich, J.

Saint-Jalmes, H.

Sakai, Y.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Salathe, R. P.

Sasaki, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, P.

Singh, K.

G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000).
[CrossRef]

G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Streibl, N.

Swanson, E. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tajahuerce, E.

Takada, K.

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

Tanida, J.

Togo, H.

Towghi, N.

Unnikrishnan, G.

G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000).
[CrossRef]

G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
[CrossRef]

Verrall, S. C.

Wang, R. K.

R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
[CrossRef]

Watson, I. A.

R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
[CrossRef]

Xing, Q.

Yokoyama, I.

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

Yoo, K. M.

Youngquist, R. C.

Zhang, S.

S. Zhang, M. A. Karim, “High-security optical integrated stream ciphers,” Opt. Eng. 38, 20–24 (1999).
[CrossRef]

Appl. Opt.

T. Nomura, B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000).
[CrossRef]

E. Tajahuerce, O. Matoba, S. C. Verrall, B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).
[CrossRef]

E. Tajahuerce, B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).
[CrossRef]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
[CrossRef]

O. Matoba, B. Javidi, “Encrypted optical storage with wavelength-key and random phase codes,” Appl. Opt. 38, 6785–6790 (1999).
[CrossRef]

T. Sasaki, H. Togo, J. Tanida, Y. Ichioka, “Stream cipher based on pseudorandom number generation with optical affine transformation,” Appl. Opt. 39, 2340–2346 (2000).
[CrossRef]

P. C. Mogensen, J. Glückstad, “Phase-only optical decryption of a fixed mask,” Appl. Opt. 40, 1226–1235 (2001).
[CrossRef]

K. Takada, I. Yokoyama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1063–1606 (1987).
[CrossRef]

C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31, 6637–6642 (1992).
[CrossRef] [PubMed]

Y. Pan, R. Bringruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
[CrossRef] [PubMed]

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
[CrossRef] [PubMed]

IEEE Trans. Photon. Technol. Lett.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image enciphement based on optical parallel processing using spatial light modulators,” IEEE Trans. Photon. Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

G. Unnikrishnan, M. Pohit, K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185, 25–31 (2000).
[CrossRef]

Opt. Eng.

R. K. Wang, I. A. Watson, C. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).
[CrossRef]

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

S. Zhang, M. A. Karim, “High-security optical integrated stream ciphers,” Opt. Eng. 38, 20–24 (1999).
[CrossRef]

Opt. Lett.

P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
[CrossRef]

P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef] [PubMed]

B. Javidi, T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28–30 (2000).
[CrossRef]

R. C. Youngquist, S. Carr, D. N. E. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
[CrossRef] [PubMed]

K. M. Yoo, Q. Xing, R. R. Alfano, “Imaging objects hidden in highly scattering media using femtosecond second-harmonic-generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

S. C. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared,” Opt. Lett. 20, 2330–2332 (1995).
[CrossRef] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
[CrossRef]

S. Bourquin, P. Seitz, R. P. Salathe, “Optical coherent topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: SLD, superluminescent diode; HWP, half-wave plate; PBS, polarizing beam splitter; QWP, quarter-wave plate; P, polarizer; A, analyzer; L, lens (f is the focal length).

Fig. 2
Fig. 2

(a) Original binary image, (b) binary image hidden behind a light-scattering medium, (c) low-temporal-coherence interference image, and (d) binary image reconstructed by the contrast discrimination method.

Fig. 3
Fig. 3

(a) Pixelized binary image and (b) its spatially coded pattern.

Fig. 4
Fig. 4

Contrast calculated from the measured interference signals obtained in the readout experiment for ODs of (a) 0.51 and (b) 1.80. The dotted and the solid curves indicate the frequency of the contrast for pixel logical values 0 and 1, respectively. The vertical arrows indicate the theoretical values.

Fig. 5
Fig. 5

Contrast difference in the readout experiment with spatial coding for ODs of (a) 1.05 and (b) 1.80. The dotted and the solid curves indicate the frequency of the contrast difference for pixel logical values 0 and 1, respectively. (c) Curves for subpixels that have low and high contrast in the readout experiment in (b).

Fig. 6
Fig. 6

BER versus OD of the light-scattering medium. Filled circles and filled rectangles indicate the BER of a binary image obtained by the contrast discrimination method and the BER of a binary image obtained by introduction of spatial coding in addition to the contrast discrimination method, respectively. Open circles, BERs of a binary image obtained by the object beam only, without low-temporal-coherence interference.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

IdΔL=Is+Ir+2IsIr1/2|VtcΔL|coskΔL,
V=Imax-Imin/Imax+Imin=2IsIr1/2|Vtc0|/Is+Ir=2rp1/2|Vtc0|/1+rp,
P=0  V<Vth,P=1  otherwise.
Vh=2prh1-δ1/2|Vtc0|/prh1-δ+1,
Vl=2prl1+δ1/2|Vtc0|/prl1+δ+1.
δmaxrh-rl/rh+rl.
Vth=22prhrlrh+rl1/2|Vtc0|/2prhrl+rh+rl.
VL=2prL1/2|Vtc0|/1+prL,VR=2prR1/2|Vtc0|/1+prR.
P=0  VD=VL-VR<0,P=1  otherwise.
OD=-logI2-I2/I1,

Metrics