Abstract

Image formation in the coherence probe microscope (CPM) and in optical coherence tomography (OCT) are compared. These systems differ in that CPM is a conventional interference microscope, but OCT is a confocal interference microscope. A major disadvantage of CPM for imaging through thick object structures is that there is no optical sectioning for the background image, which can saturate the detector. The behavior of the interference term in the presence of aberrations also exhibits some differences: Aberrations can be compensated in CPM, but not in OCT.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Balusabramian, “Optical system for surface topography measurement,” U.S. Patent no. 4,340,306 (20July1982).
  2. B. L. Danielson, C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987).
    [CrossRef] [PubMed]
  3. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
    [CrossRef]
  4. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  5. S. S. C. Chim, G. S. Kino, “Mirau correlation microscope,” Opt. Lett. 15, 579–581 (1990).
    [CrossRef] [PubMed]
  6. B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
    [CrossRef] [PubMed]
  7. S. S. C. Chim, G. S. Kino, “Three-dimensional realization in interference microscopy,” Appl. Opt. 31, 2550–2553 (1992).
    [CrossRef] [PubMed]
  8. T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef] [PubMed]
  9. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
    [CrossRef] [PubMed]
  10. Y. J. Rao, Y. N. Ning, D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993).
    [CrossRef] [PubMed]
  11. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  12. P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
    [CrossRef] [PubMed]
  13. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  14. M. V. Plissi, A. L. Rogers, D. J. Brassington, M. G. F. Wilson, “Low-coherence interferometric system utilizing an integrated optical configuration,” Appl. Opt. 34, 4735–4739 (1995).
    [CrossRef] [PubMed]
  15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  16. J. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissue by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  17. V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
    [CrossRef]
  18. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  19. Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
    [CrossRef]
  20. T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973).
    [CrossRef] [PubMed]
  21. M. Kempe, W. Rudolf, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
    [CrossRef]
  22. P. Hariharan, “The Sénarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 4, 2061–2064 (1993).
    [CrossRef]
  23. M. Roy, P. Hariharan, “White-light geometric phase interferometer for surface profiling,” in Interferometry VII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewiez, M. Takeda, eds., Proc. SPIE2544, 64–72 (1995).
    [CrossRef]
  24. M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002).
    [CrossRef]
  25. C. J. R. Sheppard, M. Roy, “Low-coherence interference microscopy,” in Optical Imaging and Microscopy, P. Török, F.-J. Kao, eds. (Springer, Berlin, Germany, 2003), pp. 257–274.
    [CrossRef]
  26. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
    [CrossRef]
  27. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [CrossRef] [PubMed]
  28. Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990).
    [CrossRef]
  29. L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
    [CrossRef]
  30. T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
    [CrossRef] [PubMed]
  31. M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
    [CrossRef]
  32. M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
    [CrossRef]
  33. D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
    [CrossRef]
  34. M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993).
    [CrossRef]
  35. M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993).
    [CrossRef]
  36. H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).
  37. C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981).
    [CrossRef]
  38. D. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996).
    [CrossRef] [PubMed]
  39. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
    [CrossRef]
  40. K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
    [CrossRef]
  41. C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
    [CrossRef]
  42. C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978).
    [CrossRef]
  43. C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
    [CrossRef]
  44. C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).
  45. M. Kempe, A. Z. Genack, W. Rudolph, P. Dorn, “Ballistic and diffuse light detection in confocal and heterodyne imaging systems,” J. Opt. Soc. Am. A 14, 216–223 (1997).
    [CrossRef]
  46. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
    [CrossRef]
  47. C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
    [CrossRef]
  48. C. J. R. Sheppard, “The spatial frequency cut-off in three dimensional imaging II,” Optik (Stuttgart) 74, 128–129 (1986).
  49. C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
    [CrossRef]
  50. M. Gu, C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
    [CrossRef]
  51. J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
    [CrossRef]
  52. M. Gu, X. Gan, C. J. R. Sheppard, “Three-dimensional coherent transfer functions in fiber optical confocal scanning microscopes,” J. Opt. Soc. Am. A 8, 1019–1025 (1991).
    [CrossRef]
  53. C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 85–89 (1997).
    [CrossRef]
  54. R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998).
    [CrossRef]
  55. M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998).
    [CrossRef]
  56. M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).
  57. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [CrossRef]
  58. C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
    [CrossRef]
  59. C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990).
    [CrossRef]
  60. C. J. R. Sheppard, M. Gu, “Three-dimensional transfer functions in confocal scanning microscopy,” in Visualization in Biomedical Microscopies, A. Kriete, ed. (VCH, Weinheim, Germany, 1992), pp. 251–282.
  61. M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995).
    [CrossRef]

2002 (1)

M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002).
[CrossRef]

1999 (1)

M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).

1998 (2)

R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998).
[CrossRef]

M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998).
[CrossRef]

1997 (1)

1996 (4)

H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).

J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
[CrossRef]

M. Kempe, W. Rudolf, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
[CrossRef]

D. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996).
[CrossRef] [PubMed]

1995 (2)

M. V. Plissi, A. L. Rogers, D. J. Brassington, M. G. F. Wilson, “Low-coherence interferometric system utilizing an integrated optical configuration,” Appl. Opt. 34, 4735–4739 (1995).
[CrossRef] [PubMed]

M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995).
[CrossRef]

1994 (4)

1993 (7)

M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993).
[CrossRef]

P. Hariharan, “The Sénarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 4, 2061–2064 (1993).
[CrossRef]

P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
[CrossRef] [PubMed]

Y. J. Rao, Y. N. Ning, D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993).
[CrossRef] [PubMed]

P. de Groot, L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, 1462–1464 (1993).
[CrossRef] [PubMed]

J. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissue by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

1992 (4)

1991 (7)

B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[CrossRef]

M. Gu, X. Gan, C. J. R. Sheppard, “Three-dimensional coherent transfer functions in fiber optical confocal scanning microscopes,” J. Opt. Soc. Am. A 8, 1019–1025 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[CrossRef]

1990 (4)

C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990).
[CrossRef]

S. S. C. Chim, G. S. Kino, “Mirau correlation microscope,” Opt. Lett. 15, 579–581 (1990).
[CrossRef] [PubMed]

Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990).
[CrossRef]

B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
[CrossRef] [PubMed]

1987 (2)

B. L. Danielson, C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987).
[CrossRef] [PubMed]

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[CrossRef]

1986 (1)

C. J. R. Sheppard, “The spatial frequency cut-off in three dimensional imaging II,” Optik (Stuttgart) 74, 128–129 (1986).

1983 (1)

C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
[CrossRef]

1982 (1)

D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
[CrossRef]

1981 (2)

C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

1980 (1)

C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).

1978 (1)

C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978).
[CrossRef]

1977 (1)

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

1976 (2)

K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

1973 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

1966 (1)

1965 (1)

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

1955 (1)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

1953 (1)

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Balusabramian,

Balusabramian, “Optical system for surface topography measurement,” U.S. Patent no. 4,340,306 (20July1982).

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[CrossRef]

Boisrobert, C. Y.

Bonner, R. F.

Brassington, D. J.

Caber, P. J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, S.

Chim, S. S. C.

Choudhury, A.

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

Cogswell, C. J.

C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Corcoran, V. J.

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

Cox, I. J.

C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
[CrossRef]

Dabbs, T.

Dainty, J. C.

Danielson, B. L.

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

de Groot, P.

Deck, L.

Dorn, P.

Dresel, T.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujii, Y.

Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gale, D.

Gan, X.

Gauderon, R.

R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998).
[CrossRef]

Genack, A. Z.

Giniunas, L.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Glass, M.

Grattan, K. T. V.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).

M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993).
[CrossRef]

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

M. Gu, X. Gan, C. J. R. Sheppard, “Three-dimensional coherent transfer functions in fiber optical confocal scanning microscopes,” J. Opt. Soc. Am. A 8, 1019–1025 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Three-dimensional transfer functions in confocal scanning microscopy,” in Visualization in Biomedical Microscopies, A. Kriete, ed. (VCH, Weinheim, Germany, 1992), pp. 251–282.

Hamilton, D. K.

C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
[CrossRef]

D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
[CrossRef]

Hariharan, P.

P. Hariharan, “The Sénarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 4, 2061–2064 (1993).
[CrossRef]

M. Roy, P. Hariharan, “White-light geometric phase interferometer for surface profiling,” in Interferometry VII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewiez, M. Takeda, eds., Proc. SPIE2544, 64–72 (1995).
[CrossRef]

Häusler, G.

Hee, M. R.

Hopkins, H. H.

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ichioka, Y.

K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
[CrossRef]

Izatt, J. A.

Jackson, D. A.

Juskaitis, R.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Kawata, S.

Kawata, Y.

Kempe, M.

Kino, G. S.

Knüttel, A.

Lee, B. S.

Lee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Mao, X. Q.

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[CrossRef]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Meggitt, B. T.

Ning, Y. N.

Owen, G. M.

Palmer, A. W.

Pether, M. I.

Plissi, M. V.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Quartel, J.

J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
[CrossRef]

Rao, Y. J.

Rogers, A. L.

Roy, M.

M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002).
[CrossRef]

C. J. R. Sheppard, M. Roy, “Low-coherence interference microscopy,” in Optical Imaging and Microscopy, P. Török, F.-J. Kao, eds. (Springer, Berlin, Germany, 2003), pp. 257–274.
[CrossRef]

M. Roy, P. Hariharan, “White-light geometric phase interferometer for surface profiling,” in Interferometry VII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewiez, M. Takeda, eds., Proc. SPIE2544, 64–72 (1995).
[CrossRef]

Rudolf, W.

Rudolph, W.

Sawatari, T.

Schmitt, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sharma, M. D.

M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).

M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998).
[CrossRef]

Shatalin, S. V.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Sheppard, C. J. R.

M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002).
[CrossRef]

M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).

R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998).
[CrossRef]

M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998).
[CrossRef]

J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
[CrossRef]

H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).

M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

C. J. R. Sheppard, M. Gu, Y. Kawata, S. Kawata, “Three-dimensional transfer functions for high aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993).
[CrossRef]

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

M. Gu, X. Gan, C. J. R. Sheppard, “Three-dimensional coherent transfer functions in fiber optical confocal scanning microscopes,” J. Opt. Soc. Am. A 8, 1019–1025 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990).
[CrossRef]

C. J. R. Sheppard, “The spatial frequency cut-off in three dimensional imaging II,” Optik (Stuttgart) 74, 128–129 (1986).

C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
[CrossRef]

D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).

C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978).
[CrossRef]

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Three-dimensional transfer functions in confocal scanning microscopy,” in Visualization in Biomedical Microscopies, A. Kriete, ed. (VCH, Weinheim, Germany, 1992), pp. 251–282.

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 85–89 (1997).
[CrossRef]

C. J. R. Sheppard, M. Roy, “Low-coherence interference microscopy,” in Optical Imaging and Microscopy, P. Török, F.-J. Kao, eds. (Springer, Berlin, Germany, 2003), pp. 257–274.
[CrossRef]

Siegman, A. E.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Strand, T. C.

Suzuki, T.

K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
[CrossRef]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takimoto, H.

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Venzke, H.

Whittenberg, C. D.

Wilson, M. G. F.

Wilson, T.

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).

C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978).
[CrossRef]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Yamamoto, K.

K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
[CrossRef]

Yamazaki, Y.

Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990).
[CrossRef]

Zhou, H.

H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 85–89 (1997).
[CrossRef]

Appl. Opt. (14)

B. L. Danielson, C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt. 26, 2836–2842 (1987).
[CrossRef] [PubMed]

B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
[CrossRef] [PubMed]

B. L. Danielson, C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
[CrossRef] [PubMed]

S. S. C. Chim, G. S. Kino, “Three-dimensional realization in interference microscopy,” Appl. Opt. 31, 2550–2553 (1992).
[CrossRef] [PubMed]

P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
[CrossRef] [PubMed]

L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[CrossRef] [PubMed]

M. V. Plissi, A. L. Rogers, D. J. Brassington, M. G. F. Wilson, “Low-coherence interferometric system utilizing an integrated optical configuration,” Appl. Opt. 34, 4735–4739 (1995).
[CrossRef] [PubMed]

D. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996).
[CrossRef] [PubMed]

J. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissue by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

T. Dresel, G. Häusler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[CrossRef] [PubMed]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
[CrossRef] [PubMed]

T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
[CrossRef] [PubMed]

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
[CrossRef] [PubMed]

T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. J. R. Sheppard, T. Wilson, “Effects of high angles of convergence on V(z) in the scanning acoustic microscope,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

Bioimaging (1)

M. D. Sharma, C. J. R. Sheppard, “Axial resolution in the fiber-optical confocal microscope,” Bioimaging 6, 98–103 (1998).
[CrossRef]

Electron. Lett. (1)

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[CrossRef]

J. Appl. Phys. (1)

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

J. Microsc. (Oxford) (3)

Y. Fujii, Y. Yamazaki, “A fiber-optic 3D microscope,” J. Microsc. (Oxford) 158, 145–152 (1990).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

C. J. R. Sheppard, C. J. Cogswell, “Three-dimensional image formation in confocal microscopy,” J. Microsc. (Oxford) 159, 179–194 (1990).
[CrossRef]

J. Mod. Opt. (8)

M. Gu, C. J. R. Sheppard, “Three-dimensional image formation in confocal scanning microscopy under ultra-short laser-pulse illumination,” J. Mod. Opt. 42, 747–762 (1995).
[CrossRef]

R. Gauderon, C. J. R. Sheppard, “Signal level in a confocal scanning microscope using step-index optical fibers,” J. Mod. Opt. 45, 529–537 (1998).
[CrossRef]

M. D. Sharma, C. J. R. Sheppard, “Effects of system geometry on the axial response of the fiber-optical confocal microscope,” J. Mod. Opt. 46, 605–621 (1999).

M. Gu, C. J. R. Sheppard, “Signal level of the fiber optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

P. Hariharan, “The Sénarmont compensator: an early application of the geometric phase,” J. Mod. Opt. 4, 2061–2064 (1993).
[CrossRef]

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

J. Quartel, C. J. R. Sheppard, “A surface reconstruction algorithm based on confocal interferometric profiling,” J. Mod. Opt. 43, 591–605 (1996).
[CrossRef]

J. Opt. Soc. Am. A (5)

Micron (1)

M. Gu, C. J. R. Sheppard, “Experimental investigation of fiber-optical confocal scanning microscopy, including a comparison with pinhole detection,” Micron 24, 557–565 (1993).
[CrossRef]

Opt. Acta (4)

D. K. Hamilton, C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta 29, 1573–1577 (1982).
[CrossRef]

K. Yamamoto, Y. Ichioka, T. Suzuki, “Influence of light coherence at the exit pupil of the condenser on the image formation,” Opt. Acta 23, 987–996 (1976).
[CrossRef]

C. J. R. Sheppard, A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta 24, 1051–1073 (1977).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978).
[CrossRef]

Opt. Commun. (4)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Fiber-optical confocal scanning interference microscopy,” Opt. Commun. 100, 79–86 (1993).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Opt. Lasers Eng. (1)

M. Roy, C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37, 631–641 (2002).
[CrossRef]

Opt. Lett. (4)

Optik (Stuttgart) (2)

H. Zhou, M. Gu, C. J. R. Sheppard, “A compact confocal interference microscope based on a four-port single-mode fiber coupler,” Optik (Stuttgart) 103, 45–48 (1996).

C. J. R. Sheppard, “The spatial frequency cut-off in three dimensional imaging II,” Optik (Stuttgart) 74, 128–129 (1986).

Proc. R. Soc. London Ser. A (4)

H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London Ser. A 231, 91–103 (1955).
[CrossRef]

C. J. R. Sheppard, D. K. Hamilton, I. J. Cox, “Optical microscopy with extended depth of field,” Proc. R. Soc. London Ser. A 387, 171–186 (1983).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Fourier imaging of phase information in conventional and scanning microscopes,” Proc. R. Soc. London Ser. A 295, 513–536 (1980).

H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. London Ser. A 217, 408–432 (1953).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Lee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (6)

C. J. R. Sheppard, M. Roy, “Low-coherence interference microscopy,” in Optical Imaging and Microscopy, P. Török, F.-J. Kao, eds. (Springer, Berlin, Germany, 2003), pp. 257–274.
[CrossRef]

M. Roy, P. Hariharan, “White-light geometric phase interferometer for surface profiling,” in Interferometry VII: Techniques and Analysis, M. Kujawinska, R. J. Pryputniewiez, M. Takeda, eds., Proc. SPIE2544, 64–72 (1995).
[CrossRef]

Balusabramian, “Optical system for surface topography measurement,” U.S. Patent no. 4,340,306 (20July1982).

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C. J. Cogswell, J.-A. Conchello, T. Wilson, eds., Proc. SPIE2984, 85–89 (1997).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Three-dimensional transfer functions in confocal scanning microscopy,” in Visualization in Biomedical Microscopies, A. Kriete, ed. (VCH, Weinheim, Germany, 1992), pp. 251–282.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the CPM.

Fig. 2
Fig. 2

Schematic diagram of OCT.

Fig. 3
Fig. 3

Types of interference microscope based on (a) Linnik, (b) Michelson, (c) Mirau, and (d) confocal33 interferometers.

Fig. 4
Fig. 4

Axial images of a thin film of 5.5 μm of SiO2 on a silicon substrate, 0.8 NA, and λ = 633 nm: (a) theoretical confocal reflection image, (b) experimental confocal reflection image, (c) experimental confocal interference image by use of a balanced homodyne system of two detectors.

Fig. 5
Fig. 5

Theoretical axial interference images for a perfect reflector with a NA of 0.95 for both illumination and collection, in (a) confocal reflection, (b) conventional interference, (c) confocal interference, (d) the interference term alone.

Fig. 6
Fig. 6

Spatial-frequency cutoffs for the three terms in the total interference image in (a) confocal and (b) conventional interference microscopes.

Fig. 7
Fig. 7

Three-dimensional CTF for OCT. The transverse spatial frequency l is normalized so that cutoff is unity for the central frequency, whereas the axial spatial frequency s is normalized so that the peak is unity at the central frequency.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

U2x2, y2 = exp-ikx1x2 + y1y2ftx2, y2,
Ux4, y4 = -1λMf--exp-ikx1x2 + y1y2f× tx2, y2hx4M + x2, y4M + y2dx2dy2,
hx2, y2=1λf-- Px3, y3 ×exp-ikx2x3+y2y3fdx3dy3.
Ix4, y4=1λ2M2f2--×-- tx2, y2hx4M+x2, y4M+y2×exp-ikx1x2+y1y2fdx2dy22×Sx1, y1dx1dy1,
Ix4, y4=1λ2M2f2 tx2, y2t*x2, y2×hx4M+x2, y4M+y2h*x4M+x2, y4M+y2×Sx1, y1exp×-ikx1x2-x2+y1y2-y2f×dx2dy2dx2dy2dx1dy1,
Tm, n=-- tx2, y2×exp-2πimx2+ny2dx2dy2,
Ix4, y4=1M2 Tm, nT*m, n×Pmλf-x1, nλf-y1×P*mλf-x1, nλf-y1Sx1, y1×exp2πim-mx4+n-ny4M×dmdndmdndx1dy1,
Ix4, y4=1M2 Tm, nT*m, n×Cm, n; m, n×exp2πim-mx4+n-ny4M×dmdndmdn,
Cm, n; m, n= Pmλf-x1, nλf-y1×P*mλf-x1, nλf-y1Sx1, y1dx1dy1
trx2, y2=r,
Ir=|r|2M2 |Pr-x1, -y1|2Sx1, y1dx1dy1,
Iix4, y4=2r*M2 tx2, y2×hx4M+x2, y4M+y2×Pr*-x1, -y1Sx1, y1×exp-ikx1x2+y1y2fdx2dy2dx1dy1.
Iix4, y4=2r*M2 Tm, ncim, n×exp-2πimx4+ny4Mdmdn,
cim, n= Pmλf-x1, nλf-y1×Pr*-x1, -y1Sx1, y1dx1dy1.
Ux4, y4=1M Tm, ncm, n×exp2πimx4+ny4Mdmdn,
cm, n= P1x1, y1×P2mλf-x1, nλf-y1dx1dy1.
Cm, n; m, n=cm, nc*m, n = P1x1, y1×P2mλf-x1, nλf-y1×P1*x1, y1×P2*mλf-x1, nλf-y1×dx1dy1dx1dy1
Pρ=exp-12 Aρ2, ρ<1, =0, ρ>1,
Ur = rM cr0, 0,
Ir=|r|2M2 P1rx1, y1P2r-x1, -y1dx1dy12,
c1m, n=cr*0, 0 P1x1, y1×P2mλf-x1, nλf-y1dx1dy1 = P1x1, y1P2mλf-x1, nλf-y1×P1r*x1, y1P2r*-x1, -y1×dx1dy1dx1dy1

Metrics