Abstract

A novel instrument, the dual-frequency interferometric confocal microscope (DICM), which facilitates the measurement of step features, is investigated. It combines the advantages of the high resolution (subnanometer) of heterodyne interferometry and the relatively large measurement range (∼5 μm) of confocal microscopy. The axial response curves of the confocal microscopy system are compared in experiments in which microscopic objects with various numerical apertures and magnifications are used. The results prove that the variation in light intensity is enough to permit discrimination of different orders of interference fringes. The DICM has been successfully utilized to measure the step height of a standard mask, and the experimental results agree well with those measured by scanning probe microscopes. The results also show that the system has good repeatability, with a maximum deviation of 5 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).
  2. D. Kim, S. Kim, H. J. Kong, Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett. 27, 1893–1895 (2002).
    [CrossRef]
  3. S.-W. Kim, G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968–5973 (1999).
    [CrossRef]
  4. I. K. Ilev, R. W. Waynant, K. R. Byrnes, J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett. 27, 1693–1695 (2002).
    [CrossRef]
  5. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef] [PubMed]
  6. B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
    [CrossRef] [PubMed]
  7. D. Pantzer, J. Politch, L. Ek, “Heterodyne profiling instrument for the angstrom region,” Appl. Opt. 25, 4168–4172 (1986).
    [CrossRef] [PubMed]
  8. D. M. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996).
    [CrossRef] [PubMed]
  9. M. Yokota, A. Asaka, T. Yoshino, “Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement,” Appl. Opt. 42, 1805–1808 (2003).
    [CrossRef] [PubMed]
  10. E. Wolf, “Significance and measurability of the phase of a spatially coherent optical field,” Opt. Lett. 28, 5–6 (2003).
    [CrossRef] [PubMed]
  11. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987).
    [CrossRef] [PubMed]
  12. A. Pförtner, J. Schwider, “Red–green–blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003).
    [CrossRef] [PubMed]
  13. T. Fukano, I. Yamaguchi, “Simultaneous measurement of thickness and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett. 21, 1942–1944 (1996).
    [CrossRef] [PubMed]
  14. I. Abdulhalim, “Method for the measurement of multi-layers refractive indices and thickness using interference microscopes with annular aperture,” Optik 110, 476–478 (1999).
  15. I. Abdulhalim, “Spectroscopic interference microscopy technique for measurement layer parameters,” Meas. Sci. Technol. 12, 1996–2001 (2001).
    [CrossRef]
  16. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  17. D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
    [CrossRef]
  18. C. J. R. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Appl. Opt. 41, 5951–5955 (2002).
    [CrossRef] [PubMed]
  19. G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
    [CrossRef]
  20. C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999).
    [CrossRef]
  21. C.-W. Tsai, C.-H. Lee, J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett. 24, 1732–1734 (1999).
    [CrossRef]
  22. C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
    [CrossRef]
  23. L. Singher, A. Brunfeld, J. Shamir, “Ellipsometry with a stabilized Zeeman laser,” Appl. Opt. 29, 2405–2408 (1990).
    [CrossRef] [PubMed]
  24. T. Wilson, “Confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 389–411.
  25. T. Wilson, “Confocal interference microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–60.
    [CrossRef]
  26. W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).
  27. R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
    [CrossRef]
  28. Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
    [CrossRef]
  29. T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973).
    [CrossRef] [PubMed]
  30. I. Abdulhalim, “Theory for double beam interferometric microscopes and experimental verification using the Linnik microscope,” J. Mod. Opt. 48, 270–302 (2001).
  31. E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958).
    [CrossRef]
  32. G. Schulz, K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991).
    [CrossRef] [PubMed]
  33. D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
    [CrossRef]
  34. V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
    [CrossRef]
  35. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  36. Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
    [CrossRef]

2003 (3)

2002 (4)

2001 (2)

I. Abdulhalim, “Spectroscopic interference microscopy technique for measurement layer parameters,” Meas. Sci. Technol. 12, 1996–2001 (2001).
[CrossRef]

I. Abdulhalim, “Theory for double beam interferometric microscopes and experimental verification using the Linnik microscope,” J. Mod. Opt. 48, 270–302 (2001).

2000 (1)

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

1999 (5)

C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999).
[CrossRef]

C.-W. Tsai, C.-H. Lee, J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett. 24, 1732–1734 (1999).
[CrossRef]

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

S.-W. Kim, G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968–5973 (1999).
[CrossRef]

I. Abdulhalim, “Method for the measurement of multi-layers refractive indices and thickness using interference microscopes with annular aperture,” Optik 110, 476–478 (1999).

1996 (2)

1995 (1)

M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).

1991 (1)

1990 (1)

1987 (1)

1986 (1)

1985 (1)

1984 (1)

R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
[CrossRef]

1982 (1)

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

1981 (2)

Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
[CrossRef]

G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610–618 (1981).
[CrossRef] [PubMed]

1976 (1)

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

1973 (1)

1966 (1)

1965 (1)

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

1958 (1)

E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, “Spectroscopic interference microscopy technique for measurement layer parameters,” Meas. Sci. Technol. 12, 1996–2001 (2001).
[CrossRef]

I. Abdulhalim, “Theory for double beam interferometric microscopes and experimental verification using the Linnik microscope,” J. Mod. Opt. 48, 270–302 (2001).

I. Abdulhalim, “Method for the measurement of multi-layers refractive indices and thickness using interference microscopes with annular aperture,” Optik 110, 476–478 (1999).

Anders, J. J.

Asaka, A.

Bhushan, B.

Brunfeld, A.

Byrnes, K. R.

Chao, Z.-X.

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Corcoran, V. J.

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

Creath, K.

Dai, G.-L.

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Dainty, J. C.

Dusa, M. V.

M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).

Ek, L.

Elssner, K.-E.

Fujii, Y.

Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Fukano, T.

Gale, D. M.

Gu, M.

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Hamilton, D. K.

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

Hobbs, P. C. D.

R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
[CrossRef]

Igarashi, T.

Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
[CrossRef]

Ilev, I. K.

Ingelstam, E.

E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958).
[CrossRef]

Jiang, H.

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

Johansson, L. P.

E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958).
[CrossRef]

Jungerman, R. L.

R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
[CrossRef]

Karklin, L.

M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).

Kim, D.

Kim, G.-H.

Kim, S.

Kim, S.-W.

Kino, G. S.

R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
[CrossRef]

Koliopoulos, C. L.

Kong, H. J.

Kothiyal, M. P.

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

Krug, W.

W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).

Lee, C.-H.

C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999).
[CrossRef]

C.-W. Tsai, C.-H. Lee, J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett. 24, 1732–1734 (1999).
[CrossRef]

Lee, Y.

Lin, D.-J.

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

Pantzer, D.

Pether, M. I.

Pförtner, A.

Politch, J.

Rienitz, J.

W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).

Sawatari, T.

Schultz, G.

W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).

Schulz, G.

Schwider, J.

Shamir, J.

Sheppard, C. J. R.

Siegman, A. E.

Singaperumal, M.

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

Singher, L.

Sirohi, R. S.

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

Sommargren, G. E.

Takimoto, H.

Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Tsai, C.-W.

Udupa, G.

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

Wang, J.

C.-W. Tsai, C.-H. Lee, J. Wang, “Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method,” Opt. Lett. 24, 1732–1734 (1999).
[CrossRef]

C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999).
[CrossRef]

Waynant, R. W.

Wilson, T.

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

T. Wilson, “Confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 389–411.

T. Wilson, “Confocal interference microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–60.
[CrossRef]

Wolf, E.

Wyant, J. C.

Xu, J.

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Xu, Y.

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Yamaguchi, I.

Yan, J.-Q.

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

Yin, C.-Y.

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Yokota, M.

Yoshino, T.

Appl. Opt. (13)

S.-W. Kim, G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38, 5968–5973 (1999).
[CrossRef]

G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610–618 (1981).
[CrossRef] [PubMed]

B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
[CrossRef] [PubMed]

D. Pantzer, J. Politch, L. Ek, “Heterodyne profiling instrument for the angstrom region,” Appl. Opt. 25, 4168–4172 (1986).
[CrossRef] [PubMed]

D. M. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures,” Appl. Opt. 35, 131–148 (1996).
[CrossRef] [PubMed]

M. Yokota, A. Asaka, T. Yoshino, “Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement,” Appl. Opt. 42, 1805–1808 (2003).
[CrossRef] [PubMed]

K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26, 2810–2816 (1987).
[CrossRef] [PubMed]

A. Pförtner, J. Schwider, “Red–green–blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42, 667–673 (2003).
[CrossRef] [PubMed]

C. J. R. Sheppard, “Three-dimensional phase imaging with the intensity transport equation,” Appl. Opt. 41, 5951–5955 (2002).
[CrossRef] [PubMed]

L. Singher, A. Brunfeld, J. Shamir, “Ellipsometry with a stabilized Zeeman laser,” Appl. Opt. 29, 2405–2408 (1990).
[CrossRef] [PubMed]

T. Sawatari, “Optical heterodyne scanning microscope,” Appl. Opt. 12, 2768–2772 (1973).
[CrossRef] [PubMed]

G. Schulz, K.-E. Elssner, “Errors in phase-measurement interferometry with high numerical apertures,” Appl. Opt. 30, 4500–4506 (1991).
[CrossRef] [PubMed]

A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
[CrossRef] [PubMed]

Appl. Phys. B (1)

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Jungerman, P. C. D. Hobbs, G. S. Kino, “Phase sensitive scanning optical microscope,” Appl. Phys. Lett. 45, 846–848 (1984).
[CrossRef]

Int. J. Electron. (1)

D.-J. Lin, J.-Q. Yan, Z.-X. Chao, H. Jiang, C.-Y. Yin, “Phasemeter with external trigger applied for PZT modulated interferometer,” Int. J. Electron. 89, 759–769 (2002).
[CrossRef]

J. Appl. Phys. (1)

V. J. Corcoran, “Directional characteristics in optical heterodyne detection processes,” J. Appl. Phys. 36, 1819–1825 (1965).
[CrossRef]

J. Mod. Opt. (1)

I. Abdulhalim, “Theory for double beam interferometric microscopes and experimental verification using the Linnik microscope,” J. Mod. Opt. 48, 270–302 (2001).

J. Sci. Instrum. (1)

E. Ingelstam, L. P. Johansson, “Correction due to aperture in transmission interference microscopes,” J. Sci. Instrum. 35, 15–17 (1958).
[CrossRef]

Meas. Sci. Technol. (2)

I. Abdulhalim, “Spectroscopic interference microscopy technique for measurement layer parameters,” Meas. Sci. Technol. 12, 1996–2001 (2001).
[CrossRef]

G. Udupa, M. Singaperumal, R. S. Sirohi, M. P. Kothiyal, “Characterization of surface topography by confocal microscopy. I. Principles and the measurement system,” Meas. Sci. Technol. 11, 305–314 (2000).
[CrossRef]

Opt. Commun. (3)

C.-H. Lee, J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1999).
[CrossRef]

Y. Fujii, H. Takimoto, T. Igarashi, “Optimum resolution of laser microscope by using optical heterodyne detection,” Opt. Commun. 38, 85–90 (1981).
[CrossRef]

Y. Fujii, H. Takimoto, “Imaging properties due to the optical heterodyne and its application to laser microscopy,” Opt. Commun. 18, 45–47 (1976).
[CrossRef]

Opt. Eng. (1)

C.-Y. Yin, G.-L. Dai, Z.-X. Chao, Y. Xu, J. Xu, “Determining the residual nonlinearity of a high-precision heterodyne interferometer,” Opt. Eng. 38, 1361–1365 (1999).
[CrossRef]

Opt. Lett. (5)

Optik (1)

I. Abdulhalim, “Method for the measurement of multi-layers refractive indices and thickness using interference microscopes with annular aperture,” Optik 110, 476–478 (1999).

Solid State Technol. (1)

M. V. Dusa, L. Karklin, “Edge detection strategies for sub-0.5-um reticle metrology,” Solid State Technol. 9, 101–108 (1995).

Other (4)

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

T. Wilson, “Confocal microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 389–411.

T. Wilson, “Confocal interference microscopy,” in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–60.
[CrossRef]

W. Krug, J. Rienitz, G. Schultz, Contributions to Interference Microscopy (Hilger & Watts, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the DICM: L, transverse Zeeman laser; F, Faraday cell; H, half-wave plate; PBS, polarization beam splitter; Q1, Q2, quarter-wave plates; C, cube corner; OL, objective lens; S, specimen; other abbreviations defined in text.

Fig. 2
Fig. 2

Configuration of the step-height measurement system. Ref., reference signal; Meas., measurement signal.

Fig. 3
Fig. 3

Long-term (1-h) stability of the DICM.

Fig. 4
Fig. 4

Short-term stability of the DICM.

Fig. 5
Fig. 5

Measurement result of axial response curves for three objective lenses (OL): (a) β = 10, NA = 0.25; (b) β = 20, NA = 0.40; (c) β = 50, NA = 0.75.

Fig. 6
Fig. 6

Tests for repeatability of ARCs (objective: β = 20, NA = 0.40; OL, objective lens.

Fig. 7
Fig. 7

Configuration of standard steps in a mask specimen (μm).

Fig. 8
Fig. 8

Effective aperture cone for a spherical light wave: h, step height; α, incidence angle of marginal ray; A–D, points sampled at the central ray and marginal light.

Tables (2)

Tables Icon

Table 1 Comparison of Standard Step-Height Measurements (nm)

Tables Icon

Table 2 Results of Phase Measurements Standard Step Height by Use of a DICM (°)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

h=ηN+ελ2,
h=N+Δφ360λ2.
Iu=sinu/2u/22,
u=8πλ h sin2α/2,
δf=λ8n sin2α/2,
ΔT=0.61λ1.4NA.
Δs=Δφ12+Δφ221/2360λ2.
η=11-0.25 NAeff2,
η=21+cos α.
I=a+b cos2πλδ0+Δ2,
m=δ0+Δ/2λ=δ0/λδ0+Δ/λ2=m0+m12,
m=122hλ+2h cos αλ=h1+cos αλ=h1+cos α/2λ/2.
h=ηmλ/2,

Metrics