Abstract

A novel instrument, the dual-frequency interferometric confocal microscope (DICM), which facilitates the measurement of step features, is investigated. It combines the advantages of the high resolution (subnanometer) of heterodyne interferometry and the relatively large measurement range (∼5 μm) of confocal microscopy. The axial response curves of the confocal microscopy system are compared in experiments in which microscopic objects with various numerical apertures and magnifications are used. The results prove that the variation in light intensity is enough to permit discrimination of different orders of interference fringes. The DICM has been successfully utilized to measure the step height of a standard mask, and the experimental results agree well with those measured by scanning probe microscopes. The results also show that the system has good repeatability, with a maximum deviation of 5 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Effect of an annular pupil filter on differential confocal microscopy

Li Liu, Xiaoqiang Deng, Lisong Yang, Guiying Wang, and Zhizhan Xu
Opt. Lett. 25(23) 1711-1713 (2000)

Transmission-type angle deviation microscopy

Ming-Hung Chiu, Chih-Wen Lai, Chen-Tai Tan, and Chin-Fa Lai
Appl. Opt. 47(29) 5442-5445 (2008)

Nanoscale defect detection by heterodyne interferometry

Haoshan Lin, Yuhe Li, Dongsheng Wang, Xiaolei Tong, and Mei Liu
Appl. Opt. 48(8) 1502-1506 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription