Abstract

The normal-incidence efficiencies of two laminar gratings and the reflectances of two parabolic mirrors with matching multilayer coatings were measured by monochromatic synchrotron radiation and were compared with modeling calculations. These optics were developed for the Extreme-Ultraviolet Imaging Spectrometer to be launched on the Japanese Solar-B mission. Each optic has two sectors coated with Mo/Si multilayers that reflect the 17–21-nm and 25–29-nm wave bands at normal incidence. The measured peak grating efficiencies are in the 8%–12% range and are in good agreement with efficiency calculations that account for the effects of groove profile and the microroughness as determined by atomic force microscopy.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Seely, “Review of multilayer normal-incidence gratings operating at 9 nm–40 nm wavelengths,” in X-Ray Mirrors, Crystals, and Multilayers II, A. Freund, A. Macrander, T. Ishikawa, J. Wood, eds., Proc. SPIE4782, 224–229 (2002).
    [CrossRef]
  2. L. Goray, J. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
    [CrossRef] [PubMed]
  3. J. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
    [CrossRef]
  4. C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).
  5. L. Goray, International Intellectual Group Inc., P.O. Box 335, Penfield, N.Y. 14526, http://www.pcgrate.com .
  6. J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å region,” Appl. Opt. 36, 8206–8213 (1997).
    [CrossRef]
  7. M. P. Kowalski, T. W. Barbee, K. F. Heidemann, H. Gursky, J. C. Rife, W. R. Hunter, G. G. Fritz, R. C. Cruddace, “Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer,” Appl. Opt. 38, 6487–6493 (1999).
    [CrossRef]
  8. D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
    [CrossRef]
  9. D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

2002 (2)

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

L. Goray, J. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

Barbee, T. W.

Brown, C.

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

Cruddace, R. C.

Cruddace, R. G.

DeLuca, E.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Donguy, S.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Fritz, G. G.

Golub, L.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Goray, L.

Gullikson, E.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Gursky, H.

Heidemann, K. F.

Heinzmann, U.

Hunter, W. R.

Kjornrattanawanich, B.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Kleineberg, U.

Korendyke, C.

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

Kowalski, M. P.

Menke, D.

Meyers, S.

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

Osterried, K.

Rife, J. C.

Seely, J.

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

L. Goray, J. Seely, “Efficiencies of master, replica, and multilayer gratings for the soft x-ray-extreme ultraviolet range: modeling based on the modified integral method and comparisons with measurements,” Appl. Opt. 41, 1434–1445 (2002).
[CrossRef] [PubMed]

J. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

Seely, J. F.

J. F. Seely, M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, U. Heinzmann, U. Kleineberg, K. Osterried, D. Menke, J. C. Rife, W. R. Hunter, “Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-Å region,” Appl. Opt. 36, 8206–8213 (1997).
[CrossRef]

J. F. Seely, “Review of multilayer normal-incidence gratings operating at 9 nm–40 nm wavelengths,” in X-Ray Mirrors, Crystals, and Multilayers II, A. Freund, A. Macrander, T. Ishikawa, J. Wood, eds., Proc. SPIE4782, 224–229 (2002).
[CrossRef]

Walton, C.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Windt, D. L.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

Appl. Opt. (3)

OE Mag. (1)

C. Korendyke, C. Brown, J. Seely, S. Meyers, “International collaboration yields a high-performance EUV spectrometer for the Solar-B spacecraft,” OE Mag. 2, 23–26 (2002).

Other (5)

L. Goray, International Intellectual Group Inc., P.O. Box 335, Penfield, N.Y. 14526, http://www.pcgrate.com .

J. F. Seely, “Review of multilayer normal-incidence gratings operating at 9 nm–40 nm wavelengths,” in X-Ray Mirrors, Crystals, and Multilayers II, A. Freund, A. Macrander, T. Ishikawa, J. Wood, eds., Proc. SPIE4782, 224–229 (2002).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, E. Gullikson, C. Walton, L. Golub, E. DeLuca, “EUV multilayers for solar physics,” in Optics for EUV, X-Ray, and Gamma-Ray Astronomy, O. Citterio, S. O’Dell, eds., Proc. SPIE5168, 1–11 (2003).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjornrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt., to be published.

J. Seely, “Multilayer grating for the extreme ultraviolet spectrometer (EIS),” in X-Ray Optics, Instruments, and Missions IV, R. Hoover, A. Walker, eds., Proc. SPIE4138, 174–181 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Calculated groove efficiency of the baseline EIS grating substrate with a 5.8-nm groove depth.

Fig. 2
Fig. 2

Calculated efficiency of the EIS grating with the two baseline multilayer coatings.

Fig. 3
Fig. 3

Calculated groove efficiencies of the FL7 and FL1 grating substrates.

Fig. 4
Fig. 4

Predicted efficiencies of the FL7 and FL1 multilayer-coated gratings.

Fig. 5
Fig. 5

Measured efficiency of the uncoated FL2 grating substrate for wavelengths from 17.7 to 31.0 nm.

Fig. 6
Fig. 6

Average reflectance curves measured at 39 points on the short-band side and at 39 points on the long-band side of mirror M1.

Fig. 7
Fig. 7

Efficiency measured at (a) nine wavelengths at the central point on the short-band side of the FL7 grating and (b) five wavelengths at the central point on the long-band side.

Fig. 8
Fig. 8

Average efficiency measured at 28 points on the short-band side of the FL7 grating and at 28 points on the long-band side.

Fig. 9
Fig. 9

Efficiency measured at exactly normal incidence at the central point (CG, center of gravity) on the long-band side of the FL7 grating and at a wavelength of 27.2 nm.

Fig. 10
Fig. 10

Average reflectances measured on the short-band (SB) and long-band (LB) sides of M2.

Fig. 11
Fig. 11

Efficiencies measured at the central points (CG, center of gravity) on the short-band (SB) and long-band (LB) sides of FL1.

Tables (1)

Tables Icon

Table 1 Characteristics of the Three Gratings

Metrics