Abstract

Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
    [CrossRef]
  2. D.-M. He, G. G. L. Set, “Underwater LIDAR imaging in highly turbid waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 71–81 (2001).
    [CrossRef]
  3. B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
    [CrossRef]
  4. N. Cadalli, D. C. Munson, A. C. Singer, “Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects,” Appl. Opt. 41, 3638–3649 (2002).
    [CrossRef] [PubMed]
  5. J. W. McLean, “High-resolution 3-D underwater imaging,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 10–19 (1999).
    [CrossRef]
  6. S. T. Osofsky, “Characterization of a vertical blurring effect unique to streak tube imaging lidar,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 1–7 (2001).
    [CrossRef]
  7. C. W. Oliver, E. F. Edwards, “Dolphin-safe research program progress report II (1992–1996),” Southwest Fisheries Science Center Admin. Rep. LJ-96-13 (National Marine Fisheries Service Southwest Fisheries Science Center, La Jolla, Calif., 1996), p. 91.
  8. A. J. Griffis, “Demonstration and evaluation of the streak tube imaging LIDAR for use in bycatch reduction,” Saltonstall Kennedy Grant NA77FD0045 Rep. 96-SWR-010 (National Marine Fisheries Service, Southwest Region, Long Beach, Calif, 2000).
  9. E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
    [CrossRef]
  10. J. W. McLean, J. D. Freeman, “Effects of ocean waves on airborne lidar imaging,” Appl. Opt. 35, 3261–3269 (1996).
    [CrossRef] [PubMed]
  11. M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
    [CrossRef]
  12. E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
    [CrossRef]
  13. Statistics obtained from http://www.state.ak.us/local/akpages/FISH.GAME/notebook/fish/pink.htm .
  14. Safe Use of Lasers, Standard Z-136.1 (American National Standards Institute, New York, 1993).
  15. H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
    [CrossRef]
  16. J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
    [CrossRef] [PubMed]
  17. J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
    [CrossRef]
  18. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  19. J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
    [CrossRef] [PubMed]
  20. C. D. Mobley, Light and Water (Academic, San Diego, 1994).
  21. R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
    [CrossRef]

2002 (1)

2001 (1)

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
[CrossRef]

2000 (1)

H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
[CrossRef]

1997 (2)

1996 (1)

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

1987 (1)

R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
[CrossRef]

1954 (1)

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Cadalli, N.

Churnside, J. H.

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
[CrossRef]

H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
[CrossRef]

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
[CrossRef] [PubMed]

J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
[CrossRef] [PubMed]

Cox, C.

DeWeert, M. J.

M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
[CrossRef]

B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
[CrossRef]

Edwards, E. F.

C. W. Oliver, E. F. Edwards, “Dolphin-safe research program progress report II (1992–1996),” Southwest Fisheries Science Center Admin. Rep. LJ-96-13 (National Marine Fisheries Service Southwest Fisheries Science Center, La Jolla, Calif., 1996), p. 91.

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Freeman, J. D.

Griffis, A. J.

A. J. Griffis, “Demonstration and evaluation of the streak tube imaging LIDAR for use in bycatch reduction,” Saltonstall Kennedy Grant NA77FD0045 Rep. 96-SWR-010 (National Marine Fisheries Service, Southwest Region, Long Beach, Calif, 2000).

Haralick, R. M.

R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
[CrossRef]

He, D.-M.

D.-M. He, G. G. L. Set, “Underwater LIDAR imaging in highly turbid waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 71–81 (2001).
[CrossRef]

Katsev, I. L.

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
[CrossRef]

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
[CrossRef]

Keeler, R. N.

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
[CrossRef]

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
[CrossRef]

M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
[CrossRef]

Lacovara, P.

B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
[CrossRef]

McLean, J. W.

J. W. McLean, J. D. Freeman, “Effects of ocean waves on airborne lidar imaging,” Appl. Opt. 35, 3261–3269 (1996).
[CrossRef] [PubMed]

J. W. McLean, “High-resolution 3-D underwater imaging,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 10–19 (1999).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water (Academic, San Diego, 1994).

Moran, S. E.

B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
[CrossRef]

M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
[CrossRef]

Munk, W.

Munson, D. C.

Oliver, C. W.

H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
[CrossRef]

C. W. Oliver, E. F. Edwards, “Dolphin-safe research program progress report II (1992–1996),” Southwest Fisheries Science Center Admin. Rep. LJ-96-13 (National Marine Fisheries Service Southwest Fisheries Science Center, La Jolla, Calif., 1996), p. 91.

Osofsky, S. T.

S. T. Osofsky, “Characterization of a vertical blurring effect unique to streak tube imaging lidar,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 1–7 (2001).
[CrossRef]

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Prikhach, A. S.

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
[CrossRef]

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
[CrossRef]

Set, G. G. L.

D.-M. He, G. G. L. Set, “Underwater LIDAR imaging in highly turbid waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 71–81 (2001).
[CrossRef]

Shaw, J. A.

Singer, A. C.

Sternberg, S. R.

R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
[CrossRef]

Tatarskii, V. V.

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
[CrossRef]

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
[CrossRef] [PubMed]

Ulich, B. L.

B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
[CrossRef]

M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
[CrossRef]

Wilson, J. J.

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
[CrossRef]

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36, 6011–6020 (1997).
[CrossRef] [PubMed]

Zege, E. P.

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
[CrossRef]

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
[CrossRef]

Zhuang, X.

R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
[CrossRef]

Zorn, H. M.

H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-19, 532–550 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

Marine Mammal Sci. (1)

H. M. Zorn, J. H. Churnside, C. W. Oliver, “Laser safety thresholds for cetateans and pinnipeds,” Marine Mammal Sci. 16, 186–200 (2000).
[CrossRef]

Opt. Eng. (2)

J. H. Churnside, J. J. Wilson, V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001).
[CrossRef]

G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Other (12)

D.-M. He, G. G. L. Set, “Underwater LIDAR imaging in highly turbid waters,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 71–81 (2001).
[CrossRef]

B. L. Ulich, P. Lacovara, S. E. Moran, M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 95–108 (1997).
[CrossRef]

C. D. Mobley, Light and Water (Academic, San Diego, 1994).

M. J. DeWeert, S. E. Moran, B. L. Ulich, R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and pmt-based airborne imaging lidar systems with realistic sea surfaces,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 115–129 (1999).
[CrossRef]

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Simulating the performance of airborne and in-water laser imaging systems,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 94–105 (2001).
[CrossRef]

Statistics obtained from http://www.state.ak.us/local/akpages/FISH.GAME/notebook/fish/pink.htm .

Safe Use of Lasers, Standard Z-136.1 (American National Standards Institute, New York, 1993).

J. W. McLean, “High-resolution 3-D underwater imaging,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 10–19 (1999).
[CrossRef]

S. T. Osofsky, “Characterization of a vertical blurring effect unique to streak tube imaging lidar,” in Ocean Optics: Remote Sensing and Underwater Imaging, R. J. Frouin, G. D. Gilbert, eds., Proc. SPIE4488, 1–7 (2001).
[CrossRef]

C. W. Oliver, E. F. Edwards, “Dolphin-safe research program progress report II (1992–1996),” Southwest Fisheries Science Center Admin. Rep. LJ-96-13 (National Marine Fisheries Service Southwest Fisheries Science Center, La Jolla, Calif., 1996), p. 91.

A. J. Griffis, “Demonstration and evaluation of the streak tube imaging LIDAR for use in bycatch reduction,” Saltonstall Kennedy Grant NA77FD0045 Rep. 96-SWR-010 (National Marine Fisheries Service, Southwest Region, Long Beach, Calif, 2000).

E. P. Zege, I. L. Katsev, A. S. Prikhach, R. N. Keeler, “Comparison of airborne lidar performance when operating in the obscuration and reflection modes,” in Airborne and In-Water Underwater Imaging, G. D. Gilbert, ed., Proc. SPIE3761, 142–153 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the lidar system with the profiling receiver on the left, the transmitter in the center, and the imaging receiver on the right. The outgoing laser beam path is in gray.

Fig. 2
Fig. 2

Typical lidar image of a group of salmon. The fish labeled (a) is used as the basis for the matched filter; the fish labeled (b) is used in the CNR calculations.

Fig. 3
Fig. 3

Example of salmon images with surface glints.

Fig. 4
Fig. 4

Depth distribution of returns from the bay in which most of the salmon were found. The color bar represents increasing relative return from left to right. High returns near the surface are salmon, and the higher return below that is the bottom of the bay.

Fig. 5
Fig. 5

Image shown in Fig. 2 after median filtering with a filter size of 5 × 5 pixels.

Fig. 6
Fig. 6

Image shown in Fig. 2 after the closing operator is applied with a 9-pixel-diameter disk.

Fig. 7
Fig. 7

Image Fig. 2 after the opening operator is applied with a 9-pixel-diameter disk.

Fig. 8
Fig. 8

Image shown in Fig. 2 after matched filtering with a horizontal ellipse.

Fig. 9
Fig. 9

Image shown in Fig. 2 after matched filtering with an ellipse rotated 45° from horizontal.

Tables (1)

Tables Icon

Table 1 CNR for the Fish Labeled B in Fig. 2 and the Same Fish after Various Image-Processing Operations

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CNR=|μF-μB|σF2+σB21/2,

Metrics