Abstract

The polarization characteristics of a terahertz (THz) wave transmitted through two-dimensional (2-D) metallic photonic crystals (MPCs) are investigated. The 2-D MPCs studied in this paper are metal slabs perforated periodically with circular holes. We measured the polarization characteristics of the THz wave using a THz time-domain spectroscopic system with wire grid polarizers in the time and frequency domains. The linearly polarized incident THz wave changes its polarization direction and becomes elliptic after it transmits through the sample. This phenomenon is highly sensitive to the incident angle. It is shown that the frequency range at which the polarization rotation occurs is related to the lattice constant of a photonic crystal, indicating the importance of photonic band modes of the 2-D MPC in the mechanism of the phenomenon.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
    [CrossRef] [PubMed]
  2. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
    [CrossRef] [PubMed]
  3. A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
    [CrossRef] [PubMed]
  4. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  5. D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
    [CrossRef] [PubMed]
  6. J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
    [CrossRef]
  7. J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
    [CrossRef]
  8. E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
    [CrossRef]
  9. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
    [CrossRef] [PubMed]
  10. T. K. Wu, Frequency Selective Surface and Grid Array (Wiley Interscience, New York, 1995).
  11. C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973).
    [CrossRef]
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  13. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  14. F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
    [CrossRef]
  15. F. Miyamaru, M. Hangyo, “Finite size effect of transmission property for two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett., submitted for publication.
  16. C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
    [CrossRef]
  17. R. M. A. Azzam, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  18. J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  19. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts in Modern Physics, G. Hohler, ed. (Springer-Verlag, Berlin, 1988).

2003

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

2002

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

2001

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

2000

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

1999

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[CrossRef] [PubMed]

1973

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Blswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Bo, X.-Z.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Chen, C.-C.

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973).
[CrossRef]

Chutinan, A.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Hangyo, M.

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

F. Miyamaru, M. Hangyo, “Finite size effect of transmission property for two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett., submitted for publication.

Helm, H.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

Ho, K.-M.

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

John, S.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Kondo, T.

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Lewen, F. T.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Mahoney, L. J.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

McCalmont, J. S.

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

McIntosh, K. A.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Miyamaru, F.

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

F. Miyamaru, M. Hangyo, “Finite size effect of transmission property for two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett., submitted for publication.

Nagashima, T.

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Norris, D. J.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Oswald, J. A.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Özbay, E.

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Reather, H.

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts in Modern Physics, G. Hohler, ed. (Springer-Verlag, Berlin, 1988).

Schall, M.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Sickmiller, M. E.

D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[CrossRef] [PubMed]

Sievenpiper, D. F.

D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[CrossRef] [PubMed]

Sigalas, M.

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

Sigalas, M. M.

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

Soukolis, C. M.

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

Soukoulis, C. M.

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Temelkuran, B.

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Toader, O.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Tuttle, G.

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

Verghese, S.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

Walther, M.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Winnewisser, C.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wu, B.-I.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Wu, T. K.

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley Interscience, New York, 1995).

Yablonovitch, E.

D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. A. Oswald, B.-I. Wu, K. A. McIntosh, L. J. Mahoney, S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

J. S. McCalmont, M. M. Sigalas, G. Tuttle, K.-M. Ho, C. M. Soukolis, “A layer-by-layer metallic photonic band-gap structure,” Appl. Phys. Lett. 68, 2759–2761 (1996).
[CrossRef]

E. Özbay, B. Temelkuran, M. Sigalas, G. Tuttle, C. M. Soukoulis, K. M. Ho, “Defect structures in metallic photonic crystals,” Appl. Phys. Lett. 69, 3797–3799 (1996).
[CrossRef]

F. Miyamaru, T. Kondo, T. Nagashima, M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. MTT-21, 1–6 (1973).
[CrossRef]

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Blswas, K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002).
[CrossRef] [PubMed]

Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. F. Sievenpiper, M. E. Sickmiller, E. Yablonovitch, “3D wire mesh photonic crystals,” Phys. Rev. Lett. 76, 2480–2483 (1996).
[CrossRef] [PubMed]

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Science

S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full thee-dimensional photonic bandgap crystals at near-infrared,” Science 289, 604–606 (2000).
[CrossRef] [PubMed]

Other

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 11 of Springer Tracts in Modern Physics, G. Hohler, ed. (Springer-Verlag, Berlin, 1988).

R. M. A. Azzam, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

F. Miyamaru, M. Hangyo, “Finite size effect of transmission property for two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett., submitted for publication.

T. K. Wu, Frequency Selective Surface and Grid Array (Wiley Interscience, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photograph of the 2-D MPC with hole diameters of d = 0.68 mm and spacing between holes of s = 1.1 mm. The sample is made of an aluminum slab with thickness t = 0.5 mm.

Fig. 2
Fig. 2

Measured waveforms of the THz wave. (a) The incident THz wave. (b) The THz wave transmitted through a 2-D MPC for E x (dashed curve) and E y (solid curve), which are the parallel and perpendicular polarization components of the THz wave transmitted through the 2-D MPC with respect to the incident THz wave polarization, respectively. The inset shows the enlarged waveform in the time range from 40 to 80 ps.

Fig. 3
Fig. 3

(a)–(e) THz waveforms of E x (dotted curve) and E y (solid curve) components, (f)–(j) ellipticity spectra obtained from the waveforms of E x and E y components for various incident angles from 3° to 15°.

Fig. 4
Fig. 4

Measured ellipticity spectra for the 2-D MPCs with lattice constants of (a) 0.86, (b) 1.0, (c) 1.3, and (d) 1.7 mm. The arrows show the resonant frequencies of the surface-plasmon polariton modes at normal incidence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γν=tan12sin-1sin 2ανsin δν,
αν=AEyνAExν,
νres=2c3nsps,

Metrics