Abstract

We propose a method to reduce cross talk by using single-mode filters, namely, extracting the fundamental mode from a multimode optical network (EFMON). The EFMON effect is evaluated for a three-step switching system consisting of cascade electro-optic (EO) waveguide prism deflector (WPD) micro-optical switches (MOSs) and a multimode waveguide network. The WPD MOS is optimized for single-mode operation in lead lanthanum zirconate titanate thin films as EO slab waveguides with a driving voltage of 12 V, a length of 310 μm, and a channel distance of 20 μm. Beam propagation method simulation reveals that mode disturbance, higher-order modes, and cross talk are accumulated by switching steps. A single-mode filter for EFMON in the output region of the switching system reduces cross talk to below -20 dB at a propagation length of 2000 μm in the single-mode filter and below -30 dB at 20000 μm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
    [CrossRef]
  2. T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
    [CrossRef]
  3. M. Nakazato, N. Suzuki, “Development of simulation program of light propagation in waveguide,” Fuji-Ric J. Supercomputer Technol. 6, 21–30 (1997).
  4. T. Yoshimura, “Waveguide-type electro-optic devices,” Japanese Patent DisclosureH 4-181231 (29June1992).
  5. T. Yoshimura, “Optical integrated circuit devices,” Japanese Patent DisclosureH 4-204633 (27July1992).
  6. M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
    [CrossRef]
  7. T. Aizawa, Technical Data Sheet for PLZT Shutter Arrays, Vol. 201-Y05J (Furuuchi Chemical Corporation, 2-7-12 Omori-kita, Ota-ku, Tokyo 143-0016, Japan, 2002).
  8. T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
    [CrossRef]
  9. T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
    [CrossRef]

2003

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

2001

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

1997

M. Nakazato, N. Suzuki, “Development of simulation program of light propagation in waveguide,” Fuji-Ric J. Supercomputer Technol. 6, 21–30 (1997).

Aizawa, T.

T. Aizawa, Technical Data Sheet for PLZT Shutter Arrays, Vol. 201-Y05J (Furuuchi Chemical Corporation, 2-7-12 Omori-kita, Ota-ku, Tokyo 143-0016, Japan, 2002).

Aoki, S.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Arai, Y.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

Asama, K.

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

Beilin, S. I.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Chou, B.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Inao, M.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Ishisuka, T.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Kawakami, S.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

Kurokawa, H.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

Lee, M.

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Motoyoshi, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Nakazato, M.

M. Nakazato, N. Suzuki, “Development of simulation program of light propagation in waveguide,” Fuji-Ric J. Supercomputer Technol. 6, 21–30 (1997).

Ninomiya, M.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

Ojima, M.

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

Roman, J.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Sotoyama, W.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Suzuki, N.

M. Nakazato, N. Suzuki, “Development of simulation program of light propagation in waveguide,” Fuji-Ric J. Supercomputer Technol. 6, 21–30 (1997).

Takahashi, Y.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Tsukada, S.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

Tsukamoto, K.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Wang, W.-C. V.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Yoshimura, T.

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

T. Yoshimura, “Optical integrated circuit devices,” Japanese Patent DisclosureH 4-204633 (27July1992).

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

T. Yoshimura, “Waveguide-type electro-optic devices,” Japanese Patent DisclosureH 4-181231 (29June1992).

Electron. Commun. Jpn. Part 2 Electron.

M. Ninomiya, Y. Arai, T. Yoshimura, H. Kurokawa, K. Asama, “Proposed and switching characteristics evaluation for waveguide-prism-deflector type micro-optical switches (WPD-MOS),” Electron. Commun. Jpn. Part 2 Electron. 86, 1192–1201 (2003).
[CrossRef]

Fuji-Ric J. Supercomputer Technol.

M. Nakazato, N. Suzuki, “Development of simulation program of light propagation in waveguide,” Fuji-Ric J. Supercomputer Technol. 6, 21–30 (1997).

IEEE J. Sel. Top. Quantum Electron.

T. Yoshimura, M. Ojima, Y. Arai, K. Asama, “Three-dimensional self-organized microoptoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003).
[CrossRef]

IEEE Trans. Components Packag. Technol.

T. Yoshimura, J. Roman, Y. Takahashi, W.-C. V. Wang, M. Inao, T. Ishisuka, K. Tsukamoto, S. Aoki, K. Motoyoshi, W. Sotoyama, “Self-organizing lightwave network (SOLNET) and its application to film optical circuit substrates,” IEEE Trans. Components Packag. Technol. 24, 500–509 (2001).
[CrossRef]

Opt. Eng.

T. Yoshimura, S. Tsukada, S. Kawakami, M. Ninomiya, Y. Arai, H. Kurokawa, K. Asama, “Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches,” Opt. Eng. 42, 439–446 (2003).
[CrossRef]

Other

T. Yoshimura, “Waveguide-type electro-optic devices,” Japanese Patent DisclosureH 4-181231 (29June1992).

T. Yoshimura, “Optical integrated circuit devices,” Japanese Patent DisclosureH 4-204633 (27July1992).

T. Aizawa, Technical Data Sheet for PLZT Shutter Arrays, Vol. 201-Y05J (Furuuchi Chemical Corporation, 2-7-12 Omori-kita, Ota-ku, Tokyo 143-0016, Japan, 2002).

T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W.-C. V. Wang, M. Inao, “Optoelectronic scalable substrates based on film/Z-connection and its application to film optical link module (FOLM),” in Optoelectronic Interconnects VII: Photonics Packaging and Integration II, M. R. Feldman, R. L. Li, W. B. Matkin, S. Tang, eds., Proc. SPIE3952, 202–213 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) EFMON concept and (b) a side view of a structural example of the 3-D MOSS by EFMON.

Fig. 2
Fig. 2

Examples of single-mode filters for EFMON: (a) two-dimensional free space insertion, (b) core refractive-index reduction, (c) clad refractive-index increase, (d) core width reduction to provide single-mode waveguides.

Fig. 3
Fig. 3

WPD micro-optical switch structure. Electric-field-induced dynamic waveguide prisms deflect optical signals, enabling switching through an EO slab waveguide.

Fig. 4
Fig. 4

Top view of 2 × 2 WPD micro-optical switch model. Waveguide lens refractive index n lens, distance between waveguide lens and input-output waveguide L WL, and EO slab waveguide length L d are optimized by the BPM simulation.

Fig. 5
Fig. 5

Details of the electric-field-induced right angle waveguide prism in WPD micro-optical switch.

Fig. 6
Fig. 6

V dependence of L d and the diffraction limit for L d . The lowest possible driving voltage is around 12 V.

Fig. 7
Fig. 7

BPM simulation results for various n lens. n lens = 2.0 is a proper condition to produce a collimated light beam.

Fig. 8
Fig. 8

(a) L WL and (b) L d dependence of coupled light intensity into the output waveguide. The input light intensity is 1. The optimum L WL and L d are 20 and 190 μm, respectively.

Fig. 9
Fig. 9

BPM simulation results for a single-step WPD micro-optical switch. Mode disturbance is observed in propagated light beams in output waveguides.

Fig. 10
Fig. 10

Model of a WPD micro-optical switch by EFMON. In the single-mode filter part, the core refractive index n core′ is 1.505, which is lower than that for output waveguides, to provide a single-mode waveguide.

Fig. 11
Fig. 11

BPM simulation for the WPD micro-optical switch by EFMON. With an increase in propagation length in the single-mode filter, mode disturbance is diminished, indicating that the optical signals in the fundamental mode are extracted.

Fig. 12
Fig. 12

Model of the three-step WPD micro-optical switch by EFMON.

Fig. 13
Fig. 13

BPM simulation results for the three-step WPD micro-optical switch. By 12-V application to the electrodes, a light beam propagates from input 1 to output 2, input 2 to output 1, and input 1 to output 2, achieving the cross state.

Fig. 14
Fig. 14

Dependence of (a) light intensity and (b) cross talk on the propagation length in single-mode filters. The input light intensity is 1. With propagation lengths, the light intensity decreases to saturation around 2000 μm by releasing excited higher modes. With the higher mode release cross-talk decreases to below -30 dB.

Tables (1)

Tables Icon

Table 1 Design Parameters for WPD Micro-Optical Switches

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 0 3 R Kerr V / d 2 / 2 .
n P = n 0 + Δ n .
n 0   sin   θ 2 n - 1 , i = n P   sin   θ 2 n - 1 , t , n P   sin   θ 2 n , i = n 0   sin   θ 2 n , t , θ 2 n , i = π 2 - θ 2 n - 1 , t , θ 2 n + 1 , i = π 2 - θ 2 n , t   n = 1 ,   2 ,   ,   N , θ d = θ 2 N , t - π 4 .
L d = P / tan   θ d .
L d < P / tan λ / n 0 D B .

Metrics