Abstract

This paper discusses fiber optic power and signal transmission systems considering the application of dc powering to information tools such as personal computers. We discuss system requirements and technical issues for the system components, including high-power laser diodes and photovoltaic cells. It is clarified that the conversion efficiencies of photovoltaic cells are kept constant with heat radiation and improve with extremely small series resistance. The transmittable optical powers through the optical fiber limited by a nonlinear optical effect are estimated. We also discuss the system designs for the use of single- and multi-mode optical fibers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Landry, J. W. Rupert, A. Mittas, “Power-by-light systems and their components: an evaluation,” Appl. Opt. 30, 1052–1061 (1991).
    [CrossRef] [PubMed]
  2. D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
    [CrossRef]
  3. F. Hartley, B. Pain, “Optical power supply and data communication for APS circuits,” NASA Tech. Brief, ETB029903 (Associated Business Publications Intl., New York, 1999).
  4. Y. Tanaka, H. Miyakawa, T. Kurokawa, “Fiber optic power supply system for information technology equipment,” in Proceedings of The 5th World Multi-Conference on Systemics, Cybernetics, and Informatics (International Institute of Informatics and Systematics, Caracas, Venezuela, 2001), Vol. V, pp. 369–373.
  5. H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.
  6. S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
    [CrossRef]
  7. G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
    [CrossRef]
  8. P. A. Iles, “Non-solar photovoltaic cells,” in Proceedings of 21st IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 420–425.
    [CrossRef]
  9. M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
    [CrossRef]
  10. L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.
  11. R. K. Jain, G. A. Landis, “Indium phosphide solar cells for laser power beaming applications,” in Proceedings of 27th Intersociety Energy Conversion Engineering Conference, T. Bland, B. McFadden, eds. (Society of Automotive Engineers, Warrendale, Pa., 1992), pp. 303–307.
  12. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
  13. Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
    [CrossRef]
  14. E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
    [CrossRef]
  15. E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
    [CrossRef]
  16. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

2001 (1)

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

1993 (1)

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

1992 (1)

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

1991 (1)

1989 (1)

E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
[CrossRef]

1988 (1)

Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
[CrossRef]

1987 (1)

E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

1983 (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).

Addis, F. W.

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

Anheier, N.

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

Aoki, Y.

Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
[CrossRef]

Baumann, J. A.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Beister, G.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Bergman, L. A.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

Bystrom, K. J.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).

Dalby, R. J.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Dunhum, G.

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

Erbert, G.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Friesem, A. A.

E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
[CrossRef]

E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Green, M. A.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

Guido, T. S.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Harding, C. M.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Hartley, F.

F. Hartley, B. Pain, “Optical power supply and data communication for APS circuits,” NASA Tech. Brief, ETB029903 (Associated Business Publications Intl., New York, 1999).

Huber, D. A.

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

Hülsewede, R.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Hyodo, R.

H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.

Iles, P. A.

P. A. Iles, “Non-solar photovoltaic cells,” in Proceedings of 21st IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 420–425.
[CrossRef]

Jackson, S.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

Jain, R. K.

R. K. Jain, G. A. Landis, “Indium phosphide solar cells for laser power beaming applications,” in Proceedings of 27th Intersociety Energy Conversion Engineering Conference, T. Bland, B. McFadden, eds. (Society of Automotive Engineers, Warrendale, Pa., 1992), pp. 303–307.

Johnston, A. R.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

Kirkham, H.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

Knauer, A.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Kurokawa, T.

H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.

Y. Tanaka, H. Miyakawa, T. Kurokawa, “Fiber optic power supply system for information technology equipment,” in Proceedings of The 5th World Multi-Conference on Systemics, Cybernetics, and Informatics (International Institute of Informatics and Systematics, Caracas, Venezuela, 2001), Vol. V, pp. 369–373.

Landis, G. A.

R. K. Jain, G. A. Landis, “Indium phosphide solar cells for laser power beaming applications,” in Proceedings of 27th Intersociety Energy Conversion Engineering Conference, T. Bland, B. McFadden, eds. (Society of Automotive Engineers, Warrendale, Pa., 1992), pp. 303–307.

Landry, M. J.

Lichtman, E.

E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
[CrossRef]

E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Liu, D. T. H.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

Mito, I.

Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
[CrossRef]

Mittas, A.

Miyakawa, H.

H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.

Y. Tanaka, H. Miyakawa, T. Kurokawa, “Fiber optic power supply system for information technology equipment,” in Proceedings of The 5th World Multi-Conference on Systemics, Cybernetics, and Informatics (International Institute of Informatics and Systematics, Caracas, Venezuela, 2001), Vol. V, pp. 369–373.

Olsen, L. C.

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

Pain, B.

F. Hartley, B. Pain, “Optical power supply and data communication for APS circuits,” NASA Tech. Brief, ETB029903 (Associated Business Publications Intl., New York, 1999).

Pittroff, W.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Rupert, J. W.

Sebastian, J.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Serreze, H. B.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Shepard, A. H.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Soltz, R.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Tajima, K.

Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
[CrossRef]

Tanaka, Y.

Y. Tanaka, H. Miyakawa, T. Kurokawa, “Fiber optic power supply system for information technology equipment,” in Proceedings of The 5th World Multi-Conference on Systemics, Cybernetics, and Informatics (International Institute of Informatics and Systematics, Caracas, Venezuela, 2001), Vol. V, pp. 369–373.

H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.

Trankle, G.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Waarts, R. G.

E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
[CrossRef]

Wang, A.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

Waters, R. G.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Wenham, S. R.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

Wenzel, H.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Weyers, M.

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

Yellen, S. L.

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

Zhao, J.

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

Appl. Opt. (1)

IEEE Electron. Device Lett. (1)

M. A. Green, J. Zhao, A. Wang, S. R. Wenham, “45% efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron. Device Lett. 13, 317–318 (1992).
[CrossRef]

IEEE J. Light Technol. (1)

Y. Aoki, K. Tajima, I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” IEEE J. Light Technol. 6, 710–719 (1988).
[CrossRef]

IEEE J. Light. Technol. (1)

E. Lichtman, R. G. Waarts, A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” IEEE J. Light. Technol. 7, 171–174 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. L. Yellen, A. H. Shepard, R. J. Dalby, J. A. Baumann, H. B. Serreze, T. S. Guido, R. Soltz, K. J. Bystrom, C. M. Harding, R. G. Waters, “Reliability of GaAs-based semiconductor diode lasers: 0.6–1.1 μm,” IEEE J. Quantum Electron. QE-29, 2058–2067 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Erbert, G. Beister, R. Hülsewede, A. Knauer, W. Pittroff, J. Sebastian, H. Wenzel, M. Weyers, G. Trankle, “High-power highly reliable Al-free 940-nm diode lasers,” IEEE J. Sel. Top. Quantum Electron. 7, 143–148 (2001).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).

Opt. Commun. (1)

E. Lichtman, A. A. Friesem, “Stimulated Brillouin scattering excited by a multimode laser in single-mode optical fibers,” Opt. Commun. 64, 544–548 (1987).
[CrossRef]

Other (8)

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, New York, 1997).

P. A. Iles, “Non-solar photovoltaic cells,” in Proceedings of 21st IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 420–425.
[CrossRef]

L. C. Olsen, D. A. Huber, G. Dunhum, F. W. Addis, N. Anheier, “High efficiency monochromatic GaAs solar cells,” in Proceedings of 22nd IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 419–424.

R. K. Jain, G. A. Landis, “Indium phosphide solar cells for laser power beaming applications,” in Proceedings of 27th Intersociety Energy Conversion Engineering Conference, T. Bland, B. McFadden, eds. (Society of Automotive Engineers, Warrendale, Pa., 1992), pp. 303–307.

D. T. H. Liu, S. Jackson, H. Kirkham, A. R. Johnston, L. A. Bergman, “A power-over-fiber sensor network,” in Photonics for Space Environments III, E. W. Taylor, ed., Proc. SPIE2482, 240–245 (1995).
[CrossRef]

F. Hartley, B. Pain, “Optical power supply and data communication for APS circuits,” NASA Tech. Brief, ETB029903 (Associated Business Publications Intl., New York, 1999).

Y. Tanaka, H. Miyakawa, T. Kurokawa, “Fiber optic power supply system for information technology equipment,” in Proceedings of The 5th World Multi-Conference on Systemics, Cybernetics, and Informatics (International Institute of Informatics and Systematics, Caracas, Venezuela, 2001), Vol. V, pp. 369–373.

H. Miyakawa, R. Hyodo, Y. Tanaka, T. Kurokawa, “Photovoltaic cell characteristics for high-intensity laser lights in fiber optic power transmission systems,” in Proceedings of 29th IEEE Photovoltaic Specialist Conference (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 1653–1655.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Calculated diameter of the copper line for dc power transmission when the allowed voltage dropdown is 10%.

Fig. 2
Fig. 2

Fiber optic power and a signal transmission system applied to an intelligent building.

Fig. 3
Fig. 3

Optical powering socket.

Fig. 4
Fig. 4

Optical output power and E/O conversion efficiency as a function of electrical input power and the ratio of the 808-nm optimized bandgap E g (1.53 eV) to voltage V as a function of the injection current for the 808-nm AlGaAs/GaAs high-power laser diode.

Fig. 5
Fig. 5

Optical output power and E/O conversion efficiency as a function of electrical input power and the ratio of the 980-nm optimized bandgap E g (1.26 eV) to voltage V as a function of the injection current for the 980-nm InGaAs/GaAs high-power laser diode.

Fig. 6
Fig. 6

Optical output power and E/O conversion efficiency as a function of electrical input power and the ratio of the 1480-nm optimized bandgap E g (0.83 eV) to voltage V as a function of the injection current for the 1480-nm InGaAsP/InP high-power laser diode.

Fig. 7
Fig. 7

J sc and V oc of sc-Si and GaAs PV cells for 808-nm high-intensity laser light.

Fig. 8
Fig. 8

J sc and V oc of 9-cell-series type InGaAs PV cell for 1480-nm high-intensity laser light.

Fig. 9
Fig. 9

J sc and V oc of Ge PV cell for 1480-nm high-intensity laser light. The solid line indicates the linear trend of J sc.

Fig. 10
Fig. 10

Conversion efficiencies of sc-Si and GaAs PV cells for 808-nm high-intensity laser light and for solar light.

Fig. 11
Fig. 11

Conversion efficiency and fill factor of the InGaAs PV cell for 1480-nm high-intensity laser light.

Fig. 12
Fig. 12

Conversion efficiency and fill factor of the Ge PV cell for 1480-nm high-intensity laser light.

Fig. 13
Fig. 13

Conversion efficiency of the sc-Si PV cell for 808-nm high-intensity laser light both with and without temperature control.

Fig. 14
Fig. 14

Measured temperature increase of sc-Si substrate (10 × 19 × 1 mm) under the illumination of 808-nm high-intensity laser light both with and without a flat-plate aluminum heat radiator (30 × 40 × 5 mm) for 40 min of illumination. The solid lines indicate the linear trend of measured temperature increase.

Fig. 15
Fig. 15

Conversion efficiencies of the sc-Si cell for 808-nm high-power laser light both with temperature control and with a flat plate aluminum heat radiator (30 × 40 × 5 mm).

Fig. 16
Fig. 16

Calculated conversion efficiencies of the sc-Si cell for 808-nm laser light intensities as a function of series resistance.

Fig. 17
Fig. 17

Spectra of the 1480-nm HPLD at an optical output power of 153 mW at a temperature of 298 K.

Fig. 18
Fig. 18

Measured transmission and reflection power through a 100-km SMF for the single-longitudinal-mode LD with 1550 nm and the multi-longitudinal-mode HPLD with 1480 nm.

Fig. 19
Fig. 19

Calculated transmission power and bandwidth for SMF and MMF. The solid lines with a symbol represent the transmission power for SMF and MMF. The solid lines without a symbol correspond to the bandwidth for SMF, GI-MMF, and SI-MMF from the top of the figure.

Tables (3)

Tables Icon

Table 1 Typical Performance for High-Power Laser Diodes

Tables Icon

Table 2 Measured Photovoltaic Cell Performances for High-Intensity Laser Light

Tables Icon

Table 3 WDM Fiber Optic Systems

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

η eff LD η i η d E g V 1 -   I th I ,
nkT q J m J m - J sc + J s + ln J sc - J m J s + 1   - 2 R s J m = 0 ,
V m =   nkT q ln J sc - J m J s + 1 - R s J m ,
η eff PV =   J m V m L int ,
n =   q kT V oc ln J sc / J s + 1 .
G MM     G SM N =   g B P 0 L eff 2 NA eff ,
P th SBS     NA eff g B L eff .
B 1 / 4 D Δ λ L SMF 2 c / n core Δ n 2 L GI - MMF c / n core Δ nL SI - MMF .

Metrics