Abstract

The double-layer networks have the advantages of being strictly nonblocking and having a simpler routing algorithm, the lowest system insertion loss, a zero differential loss, fewer drivers, fewer interconnection lines, fewer crossovers, and the best signal-to-noise-ratio characteristic compared with any nondilated network. Using holographic optical switches to construct these networks not only eliminates all interconnection lines and crossovers but also reduces the number of drivers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Spanke, “Architectures for guided-wave optical space switching systems,” IEEE Commun. Mag. 25, 42–48 (1987).
    [CrossRef]
  2. H. S. Hinton, “A nonblocking optical interconnection network using directional couplers,” Proc. GLOBECOM885–889 (1984).
  3. V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).
  4. C. C. Lu, R. A. Thompson, “The double-layer network architecture for photonic switching,” IEEE Trans. Lightwave Technol. 12, 1482–1489 (1994).
    [CrossRef]
  5. T. Shimoe, K. Hajikano, K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Proceedings of the IEEE Conference on Internation Switching Symposium (ISS’87) (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 999–1003.
  6. Y.-T. Huang, Y.-H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett. 18, 921–923 (1993).
    [CrossRef] [PubMed]
  7. M. Kato, H. Ito, T. Yamamoto, F. Yamagishi, T. Nakagami, “Multichannel optical switch that uses holograms,” Opt. Lett. 17, 769–771 (1992).
    [CrossRef] [PubMed]
  8. Y.-T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1994).
    [CrossRef] [PubMed]
  9. Y.-T. Huang, Y.-H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).
  10. J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
    [CrossRef] [PubMed]
  11. Y.-T. Huang, “Polarization-independent optical switch composed of holographic optical elements,” Opt. Lett. 20, 1198–1200 (1995).
    [CrossRef] [PubMed]
  12. J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
    [CrossRef]
  13. Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).
  14. K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.
  15. A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
    [CrossRef]
  16. Displaytech Asia-Pacific: http://www.displaytech.com/products/photonics/index.html .

1997 (1)

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

1996 (1)

J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
[CrossRef]

1995 (1)

1994 (4)

Y.-T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1994).
[CrossRef] [PubMed]

Y.-T. Huang, Y.-H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
[CrossRef] [PubMed]

C. C. Lu, R. A. Thompson, “The double-layer network architecture for photonic switching,” IEEE Trans. Lightwave Technol. 12, 1482–1489 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

1987 (1)

R. A. Spanke, “Architectures for guided-wave optical space switching systems,” IEEE Commun. Mag. 25, 42–48 (1987).
[CrossRef]

1984 (1)

H. S. Hinton, “A nonblocking optical interconnection network using directional couplers,” Proc. GLOBECOM885–889 (1984).

Anderson, G.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Benes, V. E.

V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

Chang, J.-T.

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
[CrossRef]

J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
[CrossRef] [PubMed]

Chen, Y.-H.

Y.-T. Huang, Y.-H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Y.-T. Huang, Y.-H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett. 18, 921–923 (1993).
[CrossRef] [PubMed]

Dahl, I.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Deng, J.-S.

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

Hajikano, K.

T. Shimoe, K. Hajikano, K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Proceedings of the IEEE Conference on Internation Switching Symposium (ISS’87) (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 999–1003.

Hinton, H. S.

H. S. Hinton, “A nonblocking optical interconnection network using directional couplers,” Proc. GLOBECOM885–889 (1984).

Hironishi, K.

K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.

Huang, Y.-T.

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
[CrossRef]

Y.-T. Huang, “Polarization-independent optical switch composed of holographic optical elements,” Opt. Lett. 20, 1198–1200 (1995).
[CrossRef] [PubMed]

J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
[CrossRef] [PubMed]

Y.-T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1994).
[CrossRef] [PubMed]

Y.-T. Huang, Y.-H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Y.-T. Huang, Y.-H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett. 18, 921–923 (1993).
[CrossRef] [PubMed]

Ito, H.

Karppinen, A.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Kato, M.

Kuroyanagi, S.

K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.

Lagerwall, S. T.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Lottholz, S.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Lu, C. C.

C. C. Lu, R. A. Thompson, “The double-layer network architecture for photonic switching,” IEEE Trans. Lightwave Technol. 12, 1482–1489 (1994).
[CrossRef]

Maeda, T.

K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.

Matuszczyk, M.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Murakami, K.

T. Shimoe, K. Hajikano, K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Proceedings of the IEEE Conference on Internation Switching Symposium (ISS’87) (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 999–1003.

Myllyla, R.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Nakagami, T.

Nishi, T.

K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.

Shimoe, T.

T. Shimoe, K. Hajikano, K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Proceedings of the IEEE Conference on Internation Switching Symposium (ISS’87) (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 999–1003.

Skarp, K.

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

Spanke, R. A.

R. A. Spanke, “Architectures for guided-wave optical space switching systems,” IEEE Commun. Mag. 25, 42–48 (1987).
[CrossRef]

Su, D.-C.

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
[CrossRef]

J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate-mode holographic polarization-division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994).
[CrossRef] [PubMed]

Thompson, R. A.

C. C. Lu, R. A. Thompson, “The double-layer network architecture for photonic switching,” IEEE Trans. Lightwave Technol. 12, 1482–1489 (1994).
[CrossRef]

Yamagishi, F.

Yamamoto, T.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J.-T. Chang, D.-C. Su, Y.-T. Huang, “A four-channel polarization and wavelength separation element using substrate-mode stacked holograms,” Appl. Phys. Lett. 68, 3537–3539 (1996).
[CrossRef]

Ferroelectrics (1)

A. Karppinen, S. Lottholz, R. Myllyla, G. Anderson, M. Matuszczyk, K. Skarp, I. Dahl, S. T. Lagerwall, “Electrically controlled optical attenuators and switches with ferroelectric liquid crystals,” Ferroelectrics 114, 93–97 (1991).
[CrossRef]

IEEE Commun. Mag. (1)

R. A. Spanke, “Architectures for guided-wave optical space switching systems,” IEEE Commun. Mag. 25, 42–48 (1987).
[CrossRef]

IEEE Trans. Lightwave Technol. (1)

C. C. Lu, R. A. Thompson, “The double-layer network architecture for photonic switching,” IEEE Trans. Lightwave Technol. 12, 1482–1489 (1994).
[CrossRef]

Opt. Lett. (3)

Opt. Mem. Neural Netw. (1)

Y.-T. Huang, J.-S. Deng, D.-C. Su, J.-T. Chang, “Holographic polarization-selective and wavelength-selective elements in optical network applications,” Opt. Mem. Neural Netw. 6, 249–260 (1997).

Optik (Stuttgart) (1)

Y.-T. Huang, Y.-H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).

Proc. GLOBECOM (1)

H. S. Hinton, “A nonblocking optical interconnection network using directional couplers,” Proc. GLOBECOM885–889 (1984).

Other (4)

V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

T. Shimoe, K. Hajikano, K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Proceedings of the IEEE Conference on Internation Switching Symposium (ISS’87) (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 999–1003.

K. Hironishi, T. Nishi, T. Maeda, S. Kuroyanagi, “4 × 4 PI-loss-topology based free-space switch for optical cross-connect systems,” in 21st European Conference on Optical Communication (ECOC’95) (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 123–126.

Displaytech Asia-Pacific: http://www.displaytech.com/products/photonics/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

N × N double-layer network.

Fig. 2
Fig. 2

A 4 × 4 double-layer network with ordered channel and switch numbers. In this example, channels I1 and I2 are connected to channels O3 and O1, respectively.

Fig. 3
Fig. 3

Holographic optical switch with two electro-optic halfwave plates to maintain optical beam polarization: (a) straight state, (b) swap state, (c) simplified symbol.

Fig. 4
Fig. 4

Transformation table of a 4 × 4 double-layer network.

Fig. 5
Fig. 5

Three-dimensional compact configuration for a 4 × 4 double-layer network.

Fig. 6
Fig. 6

An 8 × 8 double-layer network with ordered channel numbers.

Fig. 7
Fig. 7

Transformation table of an 8 × 8 double-layer network.

Fig. 8
Fig. 8

Transformation table of an N × N double-layer network.

Fig. 9
Fig. 9

(a) Holographic optical switch with four electro-optic halfwave plates to maintain optical beam polarization; (b) simplified symbol.

Fig. 10
Fig. 10

A 4 × 4 double-layer network with holographic optical switches in which the switches in the innermost stage have four electro-optic halfwave plates.

Fig. 11
Fig. 11

An 8 × 8 double-layer network with an ordered switch and EOHWP numbers.

Fig. 12
Fig. 12

Number of drivers for various networks.

Tables (2)

Tables Icon

Table 1 Channel Connection Table between Stages for a 4 × 4 Double-Layer Network

Tables Icon

Table 2 Channel Connection Table between Stages for an 8 × 8 Double-Layer Network

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t=d×cot θD,
DN=DN-inner+2 log2 N-2×N,=N24+2N log2 N-2N,
DN=DN-inner+2 log2 N-2×N,=2N log2 N.

Metrics