Abstract

A strain sensor system based on optical fiber Bragg gratings (FBGs) is proposed with a new matched-filter design. The strain variation on the sensor FBG is continuously followed and matched by a filter FBG by use of a feedback control loop that produces an identical strain condition on the filter FBG. The matched strain on the filter FBG is then determined from the resonance vibration of the fiber piece embedding the filter FBG. The implementation and the performance of the proposed system are described. It is demonstrated that the proposed system can distinguish strain variation on the sensor FBG with resolution of one microstrain.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. A. D. Kersey, T. A. Kerkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1371 (1993).
    [CrossRef] [PubMed]
  3. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993).
    [CrossRef] [PubMed]
  4. M. A. Davis, A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
    [CrossRef]
  5. A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
    [CrossRef]
  6. G. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, J. L. Archambault, “Simultaneous inerrogation of interferometric and Bragg grating sensors,” Opt. Lett. 20, 1340–1342 (1995).
    [CrossRef] [PubMed]
  7. B. H. Lee, “Absolute strain measurement using fiber Bragg gratings,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1996).
  8. Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.
  9. Y. K. Lee, “Real-time monitoring of the precision machine structure using fiber Bragg grating (FBG) sensors,” M.S. thesis (Kwangju Institute of Science and Technology, Kwangju, Korea, 2000).

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1995 (2)

1993 (2)

1992 (1)

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Archambault, J. L.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Brady, G.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. A. Davis, A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Jackson, D. A.

Jeong, S. H.

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

Kalli, K.

Kerkoff, T. A.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. A. Davis, A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

A. D. Kersey, T. A. Kerkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1371 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B. H.

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

B. H. Lee, “Absolute strain measurement using fiber Bragg gratings,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1996).

Lee, S. K.

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

Lee, Y. K.

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

Y. K. Lee, “Real-time monitoring of the precision machine structure using fiber Bragg grating (FBG) sensors,” M.S. thesis (Kwangju Institute of Science and Technology, Kwangju, Korea, 2000).

Lobo Ribeiro, A. B.

Morey, W. W.

A. D. Kersey, T. A. Kerkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter,” Opt. Lett. 18, 1370–1371 (1993).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Reekie, L.

Song, I. C.

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

Webb, D. J.

Electron. Lett. (2)

M. A. Davis, A. D. Kersey, “Matched-filter interrogation technique for fibre Bragg grating arrays,” Electron. Lett. 31, 822–823 (1995).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Opt. Lett. (3)

Other (3)

B. H. Lee, “Absolute strain measurement using fiber Bragg gratings,” Ph.D. dissertation (University of Colorado, Boulder, Colo., 1996).

Y. K. Lee, I. C. Song, S. H. Jeong, B. H. Lee, S. K. Lee, “Absolute strain measurement for fiber Bragg grating sensor using a string resonator with high accuracy,” in Proceedings of the Sixteenth Annual Meeting of the American Society for Precision Engineering (American Society of Precision Engineers, Raleigh, N.C., 2001), pp. 180–183.

Y. K. Lee, “Real-time monitoring of the precision machine structure using fiber Bragg grating (FBG) sensors,” M.S. thesis (Kwangju Institute of Science and Technology, Kwangju, Korea, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the strain measurement system. IMG, index-matching gel; LPF, low-pass filter.

Fig. 2
Fig. 2

Variation of the resonance frequency of a vibrating beam with respect to strain for different modes.

Fig. 3
Fig. 3

Functional diagram of the resonance-maintaining feedback loop.

Fig. 4
Fig. 4

Measured resonance frequency with respect to the strain applied to the sensor FBG: (a) first mode, (b) third mode.

Fig. 5
Fig. 5

PZT driving voltage with respect to the strain applied on the sensor FBG.

Fig. 6
Fig. 6

Resonance frequency response to stepwise increments of strain on the sensor grating: (a) first mode, (b) third mode.

Fig. 7
Fig. 7

Measured resonance frequency with respect to temperature variation at the sensor FBG and its deviation from the fitting curve.

Tables (1)

Tables Icon

Table 1 Coefficients of the Fitting Equation, Eq. (8), Calculated with the Measured Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P d = 0   I d λ d λ = 1 - γ 4 0   I i λ R s λ T r λ d λ ,
R s λ = R max   exp - λ - λ s 2 σ s 2 ,
T r λ = 1 - R r   exp - λ - λ r 2 σ r 2 .
P d = 1 - γ 4   I i λ s R s σ s π 1 - R r σ r σ exp - Δ λ 2 σ 2 .
Δ λ = Δ λ o - λ d   sin   ω o t = λ s - λ ro - λ d   sin   ω o t ,
V o Δ λ o = - constant σ r σ 3   2 Δ λ o λ d ,
EI   4 w x ,   t x 4 + ρ A   2 w x ,   t t 2 - P   2 w x ,   t x 2 = 0 ,
f i 2 = D i ε o + ε 1 + ε o + ε 2 + f o , i 2 1 + ε o + ε 3 ,   D i ε o + ε + ε o + ε 2 + f o , i 2 1 + 3 ε o + ε ,

Metrics