Abstract

A simple method of rotating an optical fiber bundle is presented to apply the random-pattern referencing scheme to hologram multiplexing. In the theoretical study, a dependence of the diffraction efficiency on the number of spatial frequencies in the reference pattern is estimated with the Bragg diffraction theory. In the experiment, hologram multiplexing is performed in which 30 holograms are recorded in a LiNbO3 crystal and are read out by rotating a fiber bundle. The result shows that this simple approach enables us to perform the hologram multiplexing and also contributes to the building of a compact optical setup.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  2. D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
    [CrossRef]
  3. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [CrossRef]
  4. G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 71, 1471–1473 (1992).
    [CrossRef]
  5. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  6. H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
    [CrossRef]
  7. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  8. K. H. Kim, H.-S. Lee, B. Lee, “Enhancement of the wavelength selectivity of a volume hologram by use of multimode optical fiber referencing,” Opt. Lett. 23, 1224–1226 (1998).
    [CrossRef]
  9. Y. H. Kang, K. H. Kim, B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).
    [CrossRef] [PubMed]
  10. Y. H. Kang, K. H. Kim, B. Lee, “Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns,” Appl. Opt. 37, 6969–6972 (1998).
    [CrossRef]
  11. Y. Jeong, B. Lee, “Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory,” Appl. Opt. 41, 4085–4091 (2002).
    [CrossRef] [PubMed]
  12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  13. E. D. Parik, Handbook of Optical Constants of Solids, 699 (Academic, San Diego, Calif., 1998).
  14. Y. Yang, A. Adibi, D. Psaltis, “Comparison of transmission and the 90-degree holographic recording geometry,” Appl. Opt. 42, 3418–3427 (2003).
    [CrossRef] [PubMed]
  15. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]

2003 (1)

2002 (1)

1998 (3)

1997 (1)

1996 (1)

1994 (2)

K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (2)

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

1992 (1)

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 71, 1471–1473 (1992).
[CrossRef]

1991 (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Adibi, A.

Barbastathis, G.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Burr, G. W.

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

Curtis, K.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Jeong, Y.

Jin, S. K.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

Kang, Y. H.

Kim, K. H.

Lee, B.

Lee, H.

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

Lee, H.-S.

Levene, M.

Leyva, V.

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 71, 1471–1473 (1992).
[CrossRef]

Mok, F. H.

Parik, E. D.

E. D. Parik, Handbook of Optical Constants of Solids, 699 (Academic, San Diego, Calif., 1998).

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 71, 1471–1473 (1992).
[CrossRef]

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Yang, Y.

Yariv, A.

G. A. Rakuljic, V. Leyva, A. Yariv, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 71, 1471–1473 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

H. Lee, S. K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).
[CrossRef]

Computer (1)

D. Psaltis, G. W. Burr, “Holographic data storage,” Computer 31, 52–60 (1998).
[CrossRef]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
[CrossRef]

Opt. Lett. (5)

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

E. D. Parik, Handbook of Optical Constants of Solids, 699 (Academic, San Diego, Calif., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Propagation directions of the object and the reference.

Fig. 2
Fig. 2

Wave-front pattern distorted along (a) the z direction and (b) the x direction.

Fig. 3
Fig. 3

Diffraction efficiency by the distorted wave front along (a) the z direction and (b) the x direction.

Fig. 4
Fig. 4

(a) Fixed fiber bundle with rotary controlled conical illumination, and (b) a fiber bundle with a rotary movement illuminated by a fixed light.

Fig. 5
Fig. 5

Experimental setup. A movement of the fiber bundle is shown in the inset. BE, beam expander; HWP, half-wave plate; PBS, polarizing beam splitter; SLM, spatial light modulator.

Fig. 6
Fig. 6

Readout images monitored by a CCD camera.

Fig. 7
Fig. 7

Signal-to-noise ratio of the readout images.

Fig. 8
Fig. 8

Rotation angle of the fiber bundle.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=I0+jNlj AjAl* expikj-kl · r+c.c.,
I0=j=1N |Aj|2,
η=ν2sin2ν2+ξ2ν2+ξ2,
ν=πn1dλ cos θ,
ξ=Kd2 cos θ Δθ cosθ-ϕ,
SNR=μ1-μ0σ12-σ02,

Metrics