Abstract

Binary gratings were fabricated with high first-order diffraction efficiency by conventional electron-beam drawing and subsequent inductive coupled-plasma dry etching upon the surfaces of SiO2 glass plates. The gratings were covered with a thin SiO2 film by plasma-enhanced chemical-vapor deposition without the grooves’ being filled in. The buried gratings exhibited first-order diffraction efficiencies of 84% for transverse-electric and 87% for transverse-magnetic polarized light at a wavelength of 1.55 μm when the period and the depth were 1.5 and 2.8 μm, respectively.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription