Abstract

A Monte Carlo modeling technique was used to simulate ultrasound-modulated optical tomography in inhomogeneous scattering media. The contributions from two different modulation mechanisms were included in the simulation. Results indicate that ultrasound-modulated optical signals are much more sensitive to small embedded objects than unmodulated intensity signals. The differences between embedded absorption and scattering objects in the ultrasound-modulated optical signals were compared. The effects of neighboring inhomogeneity and background optical properties on the ultrasound-modulated optical signals were also studied. We analyzed the signal-to-noise ratio in the experiment and found that the major noise source is the speckle noise caused by small particle movement within the biological tissue sample. We studied this effect by incorporating a Brownian motion factor in the simulation.

© 2004 Optical Society of America

Full Article  |  PDF Article

Corrections

Gang Yao and Lihong V. Wang, "Signal dependence and noise source in ultrasound-modulated optical tomography: erratum," Appl. Opt. 45, 1288-1288 (2006)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-45-6-1288

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  3. R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).
  4. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
    [CrossRef]
  5. C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  6. L.-H. Wang, Q. Shen, “Sonoluminescence tomography of turbid media,” Opt. Lett. 23, 561–563 (1998).
    [CrossRef]
  7. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
    [CrossRef]
  8. L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  9. L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  10. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiple scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  11. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  12. G. Yao, L.-H. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  13. L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  14. G. Yao, S. Jiao, L.-H. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  15. J. Li, S. Sakadzic, G. Ku, L.-H. Wang, “Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues,” Appl. Opt. 42, 4088–4094 (2003).
    [CrossRef] [PubMed]
  16. J. Selb, L. Pottier, A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
    [CrossRef]
  17. A. Lev, B. G. Sfez, “Direct, noninvasive detection of photon density in turbid media,” Opt. Lett. 27, 473–475 (2002).
    [CrossRef]
  18. L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  19. L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
    [CrossRef]
  20. S. Sakadzic, L.-H. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002).
    [CrossRef]
  21. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [CrossRef]
  22. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–805 (1998).
    [CrossRef]

2003 (1)

2002 (3)

J. Selb, L. Pottier, A. C. Boccara, “Nonlinear effects in acousto-optic imaging,” Opt. Lett. 27, 918–920 (2002).
[CrossRef]

A. Lev, B. G. Sfez, “Direct, noninvasive detection of photon density in turbid media,” Opt. Lett. 27, 473–475 (2002).
[CrossRef]

S. Sakadzic, L.-H. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

2001 (2)

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (4)

1997 (2)

1995 (2)

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

De Mul, F. F. M.

Dekker, A.

Esenaliev, R. O.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Genack, A. Z.

Hoelen, C. G. A.

Jacques, S. L.

L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Jiao, S.

Kempe, M.

Kruger, R. A.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Ku, G.

Larionov, M.

Lebec, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Li, J.

Lin, S.-P.

Liu, P.

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Marquez, G.

Oraevsky, A. A.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Pongers, R.

Pottier, L.

Saint-Jalmes, H.

Sakadzic, S.

J. Li, S. Sakadzic, G. Ku, L.-H. Wang, “Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues,” Appl. Opt. 42, 4088–4094 (2003).
[CrossRef] [PubMed]

S. Sakadzic, L.-H. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Schwartz, J. A.

Selb, J.

Sfez, B. G.

Shen, Q.

Thomsen, S. L.

Tittel, F. K.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

Wang, L.-H.

J. Li, S. Sakadzic, G. Ku, L.-H. Wang, “Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues,” Appl. Opt. 42, 4088–4094 (2003).
[CrossRef] [PubMed]

S. Sakadzic, L.-H. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
[CrossRef]

G. Yao, L.-H. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
[CrossRef]

G. Yao, S. Jiao, L.-H. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
[CrossRef]

L.-H. Wang, Q. Shen, “Sonoluminescence tomography of turbid media,” Opt. Lett. 23, 561–563 (1998).
[CrossRef]

L.-H. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
[CrossRef]

G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37, 798–805 (1998).
[CrossRef]

L.-H. Wang, X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
[CrossRef]

L.-H. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

Yao, G.

Zaslavsky, D.

Zhao, X.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (9)

Phys. Rev. E (1)

S. Sakadzic, L.-H. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Physica B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[CrossRef]

Other (5)

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[CrossRef]

R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).

R. A. Kruger, P. Liu, “Photoacoustic ultrasound: theory,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 114–118 (1994).

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, F. K. Tittel, “Laser optic-acoustic tomography for medical diagnostics: principles,” in Biomedical Sensing, Imaging, and Tracking Technologies I, R. A. Lieberman, H. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 22–31 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Configuration of the scattering medium and the ultrasound. Modulation depth and total transmittance versus the (b) absorption coefficient, (c) scattering coefficient, and (d) reduced scattering coefficient.

Fig. 2
Fig. 2

Comparison of the calculated results of (a) the modulation depth and (b) transmittance when the object center is shifted from the system optical axis along the x axis.

Fig. 3
Fig. 3

(a) Configuration of the two embedded objects in the simulation of the effects of neighboring objects. The two objects are separated by 3 mm along the z axis. Modulation depth and total transmittance versus the (b) absorption coefficient and (c) scattering coefficient of the second object.

Fig. 4
Fig. 4

Modulation depth and total transmittance versus the background (a) scattering coefficient and (b) absorption coefficient. M(n), refractive-index modulation; M(d), particle displacement modulation; M(n + d), modulation by both mechanisms.

Fig. 5
Fig. 5

Speckle pattern stability with different samples.

Fig. 6
Fig. 6

Speckle correlation measured from 1.2-cm-thick chicken breast.

Fig. 7
Fig. 7

Effect of particle relaxation time on signal sensitivity.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

In= 1Ta0TacosnωaτG1τdτ,
G1τ=0 psEstEst+τtds,
EstEst+τ=EstEst+τBEstEst+τU.
EstEst+τB=exp- 2sτ0l τ.
EstEst+τU=exp-iΔΦn+ΔΦd,
ΔM  - Mpexp-Δμapfpdp,

Metrics