Abstract

A Monte Carlo modeling technique was used to simulate ultrasound-modulated optical tomography in inhomogeneous scattering media. The contributions from two different modulation mechanisms were included in the simulation. Results indicate that ultrasound-modulated optical signals are much more sensitive to small embedded objects than unmodulated intensity signals. The differences between embedded absorption and scattering objects in the ultrasound-modulated optical signals were compared. The effects of neighboring inhomogeneity and background optical properties on the ultrasound-modulated optical signals were also studied. We analyzed the signal-to-noise ratio in the experiment and found that the major noise source is the speckle noise caused by small particle movement within the biological tissue sample. We studied this effect by incorporating a Brownian motion factor in the simulation.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Methods for parallel-detection-based ultrasound-modulated optical tomography

Jun Li and Lihong V. Wang
Appl. Opt. 41(10) 2079-2084 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription