Abstract

Amorphous titanium dioxide (TiO2) thin film has been prepared by a filtered cathodic vacuum arc technique at room temperature. It was concluded from the core level of Ti 2p 3/2 (458.3 eV) and O 1s (529.9 eV) and their deviation in binding energy (ΔBE = 71.6 eV) that only one of Ti oxidation states, Ti4+, existed in the film and the film was of ideal stoichiometry. The film possessed high transmittance, which can reach as high as that of a quartz substrate, especially in the visible range, owing to its optical bandgap of 3.2 eV. The high refractive index (2.56 at 550 nm) and low extinction coefficient (∼10-4 at 550 nm) suggested that the film had a high packing density and a low scattering-center concentration. These good optical properties implied the film prepared by this technique was a promising candidate for optical application. Besides, the film was found to transform in the structure from amorphous to anatase crystalline when it was annealed at 300 °C, as evidenced by Raman and x-ray diffraction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. DeLoach, C. R. Aita, “Thickness-dependent crystallinity of sputter-deposited titania,” J. Vac. Sci. Technol. A 16, 1963–1968 (1998).
    [CrossRef]
  2. H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
    [CrossRef]
  3. Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
    [CrossRef]
  4. T. Carlson, G. L. Griffin, “Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts,” J. Phys. Chem. 90, 5896–5900 (1986).
    [CrossRef]
  5. R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes, Par Ridge, N.J., 1995).
  6. B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).
  7. Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
    [CrossRef]
  8. Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
    [CrossRef]
  9. X. Shi, B. K. Tay, H. S. Tan, “Filtered cathodic arc source,” U.S. patent6031239 (29February2000).
  10. X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
    [CrossRef]
  11. W. Theiss, Scout Thin Film Analysis Software Handbook (M. Theiss, Aachen, Germany, 2001).
  12. C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis,” Surf. Sci. 77, 301–320 (1978).
    [CrossRef]
  13. D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
    [CrossRef]
  14. R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
    [CrossRef]
  15. Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
    [CrossRef]
  16. M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
    [CrossRef]
  17. M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
    [CrossRef]
  18. S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
    [CrossRef]
  19. W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
    [CrossRef]
  20. C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
    [CrossRef]
  21. K. H. Muller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
    [CrossRef]
  22. V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
    [CrossRef]
  23. S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
    [CrossRef]
  24. A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
    [CrossRef]

2003

Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
[CrossRef]

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

2001

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

2000

X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
[CrossRef]

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
[CrossRef]

1999

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

1998

J. D. DeLoach, C. R. Aita, “Thickness-dependent crystallinity of sputter-deposited titania,” J. Vac. Sci. Technol. A 16, 1963–1968 (1998).
[CrossRef]

1997

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

1995

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

1994

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

1992

M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
[CrossRef]

1986

K. H. Muller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

T. Carlson, G. L. Griffin, “Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts,” J. Phys. Chem. 90, 5896–5900 (1986).
[CrossRef]

1978

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

1970

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

1967

S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Aita, C. R.

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

J. D. DeLoach, C. R. Aita, “Thickness-dependent crystallinity of sputter-deposited titania,” J. Vac. Sci. Technol. A 16, 1963–1968 (1998).
[CrossRef]

Aoki, T.

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

Armstrong, N. R.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Baud, G.

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

Ben Amor, S.

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

Bendavid, A.

A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
[CrossRef]

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

Berger, H.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Besse, J. P.

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

Boxman, R. L.

R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes, Par Ridge, N.J., 1995).

Carlson, T.

T. Carlson, G. L. Griffin, “Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts,” J. Phys. Chem. 90, 5896–5900 (1986).
[CrossRef]

Chen, Q.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Chen, Z.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Choi, D.-J.

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Damen, T. C.

S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

DeLoach, J. D.

J. D. DeLoach, C. R. Aita, “Thickness-dependent crystallinity of sputter-deposited titania,” J. Vac. Sci. Technol. A 16, 1963–1968 (1998).
[CrossRef]

Fleury, P. A.

S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Flynn, D. I.

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

Gozzo, F.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Griffin, G. L.

T. Carlson, G. L. Griffin, “Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts,” J. Phys. Chem. 90, 5896–5900 (1986).
[CrossRef]

Hatanaka, Y.

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

Heitmann, W.

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

Hsu, J.-C.

C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

Jacquet, M.

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

Jand, H.-K.

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Kato, S.

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

Lau, S. P.

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
[CrossRef]

Lee, C.-C.

C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

Levy, F.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Margaritondo, G.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Martin, P. J.

A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
[CrossRef]

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes, Par Ridge, N.J., 1995).

Matsui, T.

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

Mochizuki, S.

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

Mohan, S.

M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
[CrossRef]

Mohan Rao, G.

M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
[CrossRef]

Muller, K. H.

K. H. Muller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

Murata, R.

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

Nakamura, M.

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

Nozoye, H.

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

Porto, S. P. S.

S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Qian, Y.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Sakakibara, T.

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

Sanders, D. M.

R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes, Par Ridge, N.J., 1995).

Sanjines, R.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Sayers, C. N.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Scarel, G.

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

Sheeja, D.

Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
[CrossRef]

Shi, X.

X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
[CrossRef]

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

X. Shi, B. K. Tay, H. S. Tan, “Filtered cathodic arc source,” U.S. patent6031239 (29February2000).

Sirghi, L.

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

Suhail, M. H.

M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
[CrossRef]

Sun, Z.

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

Takikawa, H.

A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
[CrossRef]

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

Tan, H. S.

X. Shi, B. K. Tay, H. S. Tan, “Filtered cathodic arc source,” U.S. patent6031239 (29February2000).

Tang, H.

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

Tay, B. K.

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
[CrossRef]

X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
[CrossRef]

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

X. Shi, B. K. Tay, H. S. Tan, “Filtered cathodic arc source,” U.S. patent6031239 (29February2000).

Theiss, W.

W. Theiss, Scout Thin Film Analysis Software Handbook (M. Theiss, Aachen, Germany, 2001).

Uyama, H.

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

Wang, C.-H.

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Won, D.-J.

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Wong, D.-H.

C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

Wu, W.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Xiao, C. Y.

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

Yakovlev, V. V.

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

Yamada, Y.

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

Zhang, Y.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Zhao, Z. W.

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
[CrossRef]

Zhou, G.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

Appl. Phys. A

D.-J. Won, C.-H. Wang, H.-K. Jand, D.-J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A 73, 595–600 (2001).
[CrossRef]

Appl. Phys. Lett.

Q. Chen, Y. Qian, Z. Chen, W. Wu, Z. Chen, G. Zhou, Y. Zhang, “Hydrothermal epitaxy of highly oriented TiO2 thin films on silicon,” Appl. Phys. Lett. 66, 1608–1611 (1995).
[CrossRef]

V. V. Yakovlev, G. Scarel, C. R. Aita, S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy,” Appl. Phys. Lett. 76, 1107–1109 (2000).
[CrossRef]

Appl. Surf. Sci.

C.-C. Lee, J.-C. Hsu, D.-H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci. 171, 151–156 (2001).
[CrossRef]

Int. J. Mod. Phys. B

X. Shi, B. K. Tay, S. P. Lau, “The double bend filtered cathodic arc technology and its application,” Int. J. Mod. Phys. B 14, 136–153 (2000).
[CrossRef]

J. Appl. Phys.

M. H. Suhail, G. Mohan Rao, S. Mohan, “dc reactive magnetron sputtering of titanium-structural and optical characterization of TiO2 films,” J. Appl. Phys. 71, 1421–1427 (1992).
[CrossRef]

R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Levy, “Electronic structure of anatase TiO2 oxide,” J. Appl. Phys. 75, 2945–2951 (1994).
[CrossRef]

K. H. Muller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

J. Phys. Chem.

T. Carlson, G. L. Griffin, “Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts,” J. Phys. Chem. 90, 5896–5900 (1986).
[CrossRef]

J. Vac. Sci. Technol. A

J. D. DeLoach, C. R. Aita, “Thickness-dependent crystallinity of sputter-deposited titania,” J. Vac. Sci. Technol. A 16, 1963–1968 (1998).
[CrossRef]

Z. W. Zhao, B. K. Tay, S. P. Lau, C. Y. Xiao, “Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” J. Vac. Sci. Technol. A 21, 906–910 (2003).
[CrossRef]

Y. Yamada, H. Uyama, R. Murata, H. Nozoye, “Low temperature deposition of titanium-oxide films with high refractive indices by oxygen-radical beam assisted evaporation combined with ion beams,” J. Vac. Sci. Technol. A 19, 2479–2482 (2001).
[CrossRef]

Phys. Rev.

S. P. S. Porto, P. A. Fleury, T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev. 154, 522–526 (1967).
[CrossRef]

Surf. Coat. Technol.

Z. W. Zhao, B. K. Tay, D. Sheeja, “Structural characteristics and mechanical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system,” Surf. Coat. Technol. 167, 234–239 (2003).
[CrossRef]

Surf. Eng.

B. K. Tay, X. Shi, D. I. Flynn, Z. Sun, “Hydrogen free tetrahedral carbon film preparation and tribological characterization,” Surf. Eng. 13, 213–217 (1997).

Surf. Sci.

C. N. Sayers, N. R. Armstrong, “X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis,” Surf. Sci. 77, 301–320 (1978).
[CrossRef]

Thin Solid Films

A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–249 (2000).
[CrossRef]

H. Takikawa, T. Matsui, T. Sakakibara, A. Bendavid, P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Solid Films 348, 145–151 (1999).
[CrossRef]

M. Nakamura, S. Kato, T. Aoki, L. Sirghi, Y. Hatanaka, “Formation mechanism for TiOx thin film obtained by remote plasma enhanced chemical vapor deposition in H2-O2 mixture gas plasma,” Thin Solid Films 401, 138–144 (2001).
[CrossRef]

S. Ben Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings,” Thin Solid Films 293, 163–169 (1997).
[CrossRef]

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

Other

W. Theiss, Scout Thin Film Analysis Software Handbook (M. Theiss, Aachen, Germany, 2001).

R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Noyes, Par Ridge, N.J., 1995).

X. Shi, B. K. Tay, H. S. Tan, “Filtered cathodic arc source,” U.S. patent6031239 (29February2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Ti 2p XPS spectrum of TiO2 thin film on n-Si(100). (b) O 1s XPS spectrum of TiO2 thin film on n-Si(100).

Fig. 2
Fig. 2

Atomic force microscope image for TiO2 thin film deposited at room temperature.

Fig. 3
Fig. 3

Transmittance of the stoichiometric TiO2 thin film as a function of wavelength.

Fig. 4
Fig. 4

Refractive index and the extinction coefficient as a function of wavelength.

Fig. 5
Fig. 5

Plot of (αh ν)1/2 versus photon energy (electron volts).

Fig. 6
Fig. 6

Raman spectrum of TiO2 thin film: (a) as-grown film and (b) the film after RTA at 300 °C for 300 s in vacuum.

Fig. 7
Fig. 7

XRD patterns of TiO2 thin film: (a) as-grown film and (b) the film after RTA at 300 °C for 300 s in vacuum.

Tables (2)

Tables Icon

Table 1 Comparison of Refractive Index and Extinction Coefficient by Different Techniques

Tables Icon

Table 2 Frequency and Assignment of the Raman Bands of Anatase and Rutile Titaniaa

Metrics