Abstract

Thin-film wavelets are further analyzed for the design of dichroic mirrors for ultrafast solid-state lasers that provide both high reflectance on the lasing wavelength range and high transmittance of the pump light. Discrete quarter-wave-thick dielectric thin-film structures of homogeneous refractive indices following a quintic-wavelet envelope are considered. Relations for the reflectance on the lasing wavelength range are given. Adding several index-matching quarter-wave layers to both sides of the discrete wavelet optimizes the transmittance of the pump light. The design is further optimized to get minimum phase distortion on the lasing wavelength range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Laporta, V. Magni, “Dispersive effects in the reflection of femtosecond optical pulses from broadband dielectric mirrors,” Appl. Opt. 24, 2014–2020 (1985).
    [CrossRef] [PubMed]
  2. A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, R. Szipocs, “Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser,” Opt. Lett. 20, 602–604 (1995).
    [CrossRef] [PubMed]
  3. J. Hebling, E. J. Mayer, J. Kuhl, R. Szipocs, “Chirped-mirror dispersion-compensated femtosecond optical parametric oscillator,” Opt. Lett. 20, 919–921 (1995).
    [CrossRef] [PubMed]
  4. N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
    [CrossRef]
  5. J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
    [CrossRef]
  6. D. E. Spence, P. N. Kean, W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [CrossRef] [PubMed]
  7. L. Xu, Ch. Spielmann, F. Krausz, R. Szipocs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation,” Opt. Lett. 21, 1259–1261 (1996).
    [CrossRef] [PubMed]
  8. R. Szipocs, K. Ferencz, Ch. Spielmann, F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
    [CrossRef] [PubMed]
  9. P. G. Verly, “Optical coating synthesis by simultaneous refractive-index and thickness refinement of inhomogeneous films,” Appl. Opt. 37, 7327–7333 (1998).
    [CrossRef]
  10. P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
    [CrossRef]
  11. J. A. Dobrowolski, R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990).
    [CrossRef] [PubMed]
  12. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989).
    [CrossRef] [PubMed]
  13. W. H. Southwell, “Extended-bandwidth reflector designs by using wavelets,” Appl. Opt. 36, 314–318 (1997).
    [CrossRef] [PubMed]
  14. X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
    [CrossRef]
  15. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983).
    [CrossRef] [PubMed]
  16. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]
  17. B. E. Perilloux, “Discrete thin-film layer thickness modulation,” Appl. Opt. 37, 3527–3532 (1998).
    [CrossRef]
  18. O. S. Heavens, H. M. Liddell, “Staggered broad-band reflecting multilayers,” Appl. Opt. 5, 373–376 (1966).
    [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sect. 1.6.

1998

N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
[CrossRef]

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

B. E. Perilloux, “Discrete thin-film layer thickness modulation,” Appl. Opt. 37, 3527–3532 (1998).
[CrossRef]

P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
[CrossRef]

P. G. Verly, “Optical coating synthesis by simultaneous refractive-index and thickness refinement of inhomogeneous films,” Appl. Opt. 37, 7327–7333 (1998).
[CrossRef]

1997

1996

1995

1994

1991

1990

1989

1985

1983

1966

Baumeister, P.

Biswal, S.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sect. 1.6.

Chanteloup, J. C.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Dobrowolski, J. A.

Druon, F.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Faure, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Ferencz, K.

Heavens, O. S.

Hebling, J.

Hirai, T.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Honninger, C.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Itatani, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Kartner, F. X.

N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
[CrossRef]

Kean, P. N.

Keller, U.

N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
[CrossRef]

Kemp, R. A.

Krausz, F.

Kuhl, J.

Laporta, P.

Lenzner, M.

Liddell, H. M.

Magni, V.

Masumoto, H.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Matuschek, N.

N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
[CrossRef]

Mayer, E. J.

Mourou, G. A.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nantel, M.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nees, J.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Nishimura, A.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Perilloux, B. E.

Sibbett, W.

Someno, Y.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Southwell, W. H.

Spence, D. E.

Spielmann, Ch.

Stingl, A.

Szipocs, R.

Takuma, H.

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

Verly, P. G.

Wang, X.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sect. 1.6.

Xu, L.

Appl. Opt.

Appl. Phys. Lett.

X. Wang, H. Masumoto, Y. Someno, T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett. 72, 3264–3266 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Matuschek, F. X. Kartner, U. Keller, “Theory of double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
[CrossRef]

J. Nees, S. Biswal, F. Druon, J. Faure, M. Nantel, G. A. Mourou, A. Nishimura, H. Takuma, J. Itatani, J. C. Chanteloup, C. Honninger, “Ensuring compactness, reliability, and scalability for the next generation of high-field lasers,” IEEE J. Sel. Top. Quantum Electron. 4, 376–384 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975), Sect. 1.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 2
Fig. 2

Discrete wavelets comprising homogeneous thin layers of optical thickness of (a) λ0/8 and (b) λ0/4, with (c) spectral responses shown by dashed and solid curves, respectively, when n 0 = n s = n a .

Fig. 3
Fig. 3

Spectral responses of the QWDW (solid curves) and periodic QW (dashed curves) structures at the same values of N = 50 and n 0 = n s = n a = 1.9, with n pa = 0.35, emphasizing (a) the almost equal full widths of the stop bands at R = 0.5 and (b) different maximum reflectances at the center of the stop bands.

Fig. 4
Fig. 4

Smallest values of N that are needed to attain R 0 ≥ 0.9999 with QWDWs at various n pa, when n a = 1.7, 1.9, and 2.1 (solid curves 1, 2, and 3). Dashed curves 1–3 correspond to the QW periodic structures for the respective values of N and n a . Dotted curves represent the values obtained with relation (7).

Fig. 5
Fig. 5

(a) QWDW (N = 50, n a = 1.9, and n pa = 0.3) with five QW layers of refractive indices following quintic variations added to both sides to index match the substrate refractive index (n s = 1.52) and the minimum refractive index 1.35 on the incident medium side (n 0 = 1). (b) The same as in (a), but two QW layers are added to both sides of the QWDW. (c) Spectral responses when λ0 = 1 μm, emphasizing the passbands (in the lower part) and the stop bands (in the upper part) for the QWDWs of (a) and (b) represented by solid and dashed curves, respectively. Dashed-dotted curves indicate the spectral responses for the QWDW with no index-matching layers added. The scale of the ordinate changes at 0.4.

Fig. 6
Fig. 6

(a) QWDW of Fig. 5(b) with quintic variations is replaced by linear ones on portions. Spectral responses for QWDWs of Figs. 5(a), 5(b), and 6(a) are represented by solid, dashed and dashed-dotted curves, respectively, when (b) λ0 = 1 μm and (c) λ0 = 0.8 μm.

Fig. 7
Fig. 7

(a) QWDW of Fig. 6(a) optimized for minimum phase distortion. (b) GVD expressed in squared femtoseconds on the lasing wavelength range and (c) the reflectance against wavelength, when λ0 = 1 μm for the structures of Figs. 5(b), 6(a), and 7(a) represented by dashed, dashed-dotted, and solid curves, respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

nx=na+0.5nppAxsin4πx/λ0+ϕ,
Ax=10t3-15t4+6t5,
t=2x/T  for xT/2,
t=2T-x/T  for x>T/2.
nx=na±npaAx,
Δλ/λ04/πnpa/na.
β=ln1-R01/21+R01/2-1,
ρ=npa/na,
N-1=-2β-1ρ+ρ3/3.
N-1-2β-1fρ+fρ3/3,

Metrics