Abstract

We report on an optical fiber surface plasmon resonance sensor that exhibits multiple resonance peaks. The sensor is based on a uniform-waist single-mode tapered fiber coated on one side with a thin metal layer. Owing to the asymmetry of the sensor structure, the different hybrid surface plasmon modes supported by the semicircular layer can be excited by the fundamental fiber mode. As a result, the sensor transmission spectrum exhibits several dips that depend on the taper waist diameter. The advantages of a plasmon resonance sensor with multiple dips are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  2. R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  3. L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
    [CrossRef]
  4. R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
  5. A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
    [CrossRef]
  6. J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401–405 (1995).
    [CrossRef]
  7. R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
    [CrossRef]
  8. A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
    [CrossRef]
  9. J. Villatoro, D. Monzón-Hernández, E. Mejía, “Fabrication and modeling of uniform-waist singlemode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
    [CrossRef] [PubMed]
  10. R. C. Jorgenson, S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A 43, 44–48 (1994).
    [CrossRef]
  11. J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
    [CrossRef]
  12. L. A. Obando, K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
    [CrossRef]
  13. S. J. Al-Bader, M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
    [CrossRef]
  14. A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
    [CrossRef]
  15. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]

2003 (1)

2001 (1)

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

1999 (4)

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
[CrossRef]

L. A. Obando, K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

1997 (2)

J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
[CrossRef]

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401–405 (1995).
[CrossRef]

1994 (1)

R. C. Jorgenson, S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A 43, 44–48 (1994).
[CrossRef]

1993 (4)

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

S. J. Al-Bader, M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10, 83–88 (1993).
[CrossRef]

1992 (1)

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Al-Bader, S. J.

Alonso, R.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

Andrés, M. V.

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Birks, T. A.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Booksh, K. S.

L. A. Obando, K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Cruz, J. L.

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Ctyroky, J.

R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
[CrossRef]

Ctyroký, J.

J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
[CrossRef]

De Maria, L.

L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Díez, A.

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
[CrossRef]

J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
[CrossRef]

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401–405 (1995).
[CrossRef]

Imtaar, M.

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A 43, 44–48 (1994).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Lowe, C. R.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Martenelli, M.

L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Mejía, E.

Millington, R. B.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Monzón-Hernández, D.

Obando, L. A.

L. A. Obando, K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Payne, F. P.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Pelayo, J.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

Skalský, M.

J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
[CrossRef]

Tornos, J.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

Tubb, A. J. C.

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Vegetti, G.

L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Villatoro, J.

Villuendas, F.

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

Yee, S. S.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A 43, 44–48 (1994).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Anal. Chem. (1)

L. A. Obando, K. S. Booksh, “Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors,” Anal. Chem. 71, 5116–5122 (1999).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Ctyroký, J. Homola, M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33, 1246–1248 (1997).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Sens. Actuators A (2)

R. C. Jorgenson, S. S. Yee, “Control of the dynamic range and sensitivity of a surface plasmon resonance based fiber optic sensor,” Sens. Actuators A 43, 44–48 (1994).
[CrossRef]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical fiber sensors based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).

Sens. Actuators B (7)

A. J. C. Tubb, F. P. Payne, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

J. Homola, “Optical fiber sensor based on surface plasmon resonance excitation,” Sens. Actuators B 29, 401–405 (1995).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B 54, 74–79 (1999).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

L. De Maria, M. Martenelli, G. Vegetti, “Fibre optic sensor based on surface plasmon interrogation,” Sens. Actuators B 12, 221–223 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Diagram of an SMTF with uniform waist. ρ0 is the diameter of the untapered fiber, ρ is the final SMTF waist diameter, and L 0 is the interaction length. (b) Cross section of the device. The shadowed areas represent the metal layer. θ represents a radial angle, t is the maximum film thickness, and n 2 and n 4 are, respectively, the RI of the fiber cladding and the external (sample) medium. Propagation of the fundamental fiber mode is illustrated.

Fig. 2
Fig. 2

Experimental transmission spectra of four samples with different waist diameters. (a) plot obtained with a sample with ρ = 40 μm. (b) plot obtained with a sample with ρ = 35 μm. (c) plot obtained with a sample with ρ = 30 μm. (d) plot obtained with a sample with ρ = 25 μm. In all cases L 0, was 4 mm, t was ∼26 nm, and the external medium was a Cargille oil with a nominal RI of 1.446.

Fig. 3
Fig. 3

Experimental transmission spectra of a sample with ρ = 25 μm, L 0 = 4 mm, and t = 26 nm, for different values of n 4 indicated in the figure. The resonance peaks are numbered to show their shift when n 4 varies.

Fig. 4
Fig. 4

(a)–(c), experimental results of the position of the SPR curve minimums as a function of n 4 for the samples described, respectively, in Figs. 2(a)2(c). The solid squares, circles, triangles, etc., are experimental points. In all cases, the first curve (from left to right) corresponds to the fundamental peak.

Metrics