Abstract

Enhanced transmission through subwavelength slit gratings and hole arrays is studied in view of its application in the far-infrared and microwave domains. Because for perfectly conducting gratings, plasmon resonances are not expected to produce an enhanced transmission, other kinds of resonance, such as Fabry-Perot, waveguide-mode, and cavity-mode resonances, are studied. The possibility of reaching 100% transmittivity for some particular wavelengths is established when two superimposed identical gratings are used while each of them transmits approximately 1% off resonance. A similar transmission is obtained with hole arrays. The study of the field map inside the groove region allows our establishing the nature of the resonance, that is involved. Comparison of the bandwidth with respect to the wavelength or incidence given by various kinds of resonance is presented.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [CrossRef]
  3. H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, Berlin, 1975), Chap. 2.
  4. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated grating,” Opt. Commun. 55, 377–380 (1985).
    [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  6. S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
    [CrossRef]
  7. N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
    [CrossRef]
  9. Z. Bomzon, V. Kleiner, E. Hasman, “Computer-generated space-variant polarization elements with subwavelength metal stripes,” Opt. Lett. 26, 33–35 (2001).
    [CrossRef]
  10. N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
    [CrossRef]
  11. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
    [CrossRef]
  12. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
    [CrossRef]
  13. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
    [CrossRef]
  14. R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed grating,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 249.
  15. E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
    [CrossRef]
  16. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  17. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
    [CrossRef]
  18. R. Petit, G. Bouchitté, “Replacement of a very fine grating by a stratified layer, homogenization techniques, and multiple-scale method theory,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moiré Phenomena 431, J. Lerner, ed., Proc. SPIE815, 25–31 (1988).
  19. S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
    [CrossRef]
  20. R. Petit, “A tutorial introduction,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 12.
  21. B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
    [CrossRef]
  22. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  23. E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001).
    [CrossRef]
  24. M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).
  25. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]

2003 (2)

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2002 (1)

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

2001 (4)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Computer-generated space-variant polarization elements with subwavelength metal stripes,” Opt. Lett. 26, 33–35 (2001).
[CrossRef]

E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001).
[CrossRef]

1999 (2)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

1997 (1)

1996 (1)

1986 (2)

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

1985 (1)

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated grating,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

1981 (1)

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

1978 (1)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

1941 (1)

1902 (1)

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Adams, J. L.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Andrewartha, J. R.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Bokor, N.

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Bomzon, Z.

Bonod, N.

Botten, I. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Botten, L. C.

R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed grating,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 249.

Bouchitté, G.

R. Petit, G. Bouchitté, “Replacement of a very fine grating by a stratified layer, homogenization techniques, and multiple-scale method theory,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moiré Phenomena 431, J. Lerner, ed., Proc. SPIE815, 25–31 (1988).

Bur, J.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Craig, M. S.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Davidson, N.

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

De Dood, M.

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Derrick, G. H.

R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed grating,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 249.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Enoch, S.

N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

Fano, U.

Flemming, J. G.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Frieseman, A.

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gralak, B.

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Hasman, E.

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Z. Bomzon, V. Kleiner, E. Hasman, “Computer-generated space-variant polarization elements with subwavelength metal stripes,” Opt. Lett. 26, 33–35 (2001).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Kleiner, V.

Knop, K.

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, Berlin, 1975), Chap. 2.

Kurtz, S. R.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, L.

Lin, S. Y.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Mashev, L.

E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated grating,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Maystre, D.

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

McPhedran, R. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed grating,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 249.

Moharam, M. G.

Neviere, M.

Neviére, M.

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

Nevière, M.

Petit, R.

R. Petit, “A tutorial introduction,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 12.

R. Petit, G. Bouchitté, “Replacement of a very fine grating by a stratified layer, homogenization techniques, and multiple-scale method theory,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moiré Phenomena 431, J. Lerner, ed., Proc. SPIE815, 25–31 (1988).

Popov, E.

N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11, 482–490 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

E. Popov, M. Nevière, “Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A 18, 2886–2894 (2001).
[CrossRef]

E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated grating,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).

Reinisch, R.

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

Robinson, D. M.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
[CrossRef]

Shechter, R.

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Tayeb, G.

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wood, R.

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Zubrzycki, W.

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

App. Opt. (1)

N. Bokor, R. Shechter, N. Davidson, A. Frieseman, E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” App. Opt. 40, 2076–2080 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, D. M. Robinson, “Remarkable transmission of microwaves through a wall of long metallic bricks,” Appl. Phys. Lett. 79, 2844–2846 (2001).
[CrossRef]

J. Appl. Phys. (2)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “Grating-coupled surface plasmons at microwave frequency,” J. Appl. Phys. 86, 1791–1795 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, “The coupling of microwave radiation to surface plasmon polaritons and guided modes via dielectric gratings,” J. Appl. Phys. 87, 2677–2683 (1999).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

S. Enoch, E. Popov, M. Neviére, R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A Pure Appl. Opt. 4, S83–S87 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

S. Y. Lin, J. G. Flemming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelength,” Nature 394, 251–253 (1998).
[CrossRef]

Opt. Acta (2)

E. Popov, L. Mashev, D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Opt. Commun. (2)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

L. Mashev, E. Popov, “Zero order anomaly of dielectric coated grating,” Opt. Commun. 55, 377–380 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. (1)

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. E (1)

B. Gralak, M. De Dood, G. Tayeb, S. Enoch, D. Maystre, “Theoretical study of photonic bandgaps in woodpile crystals,” Phys. Rev. E 67, 066601 (2003).
[CrossRef]

Other (5)

M. Nevière, E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).

R. Petit, “A tutorial introduction,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 12.

R. Petit, G. Bouchitté, “Replacement of a very fine grating by a stratified layer, homogenization techniques, and multiple-scale method theory,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moiré Phenomena 431, J. Lerner, ed., Proc. SPIE815, 25–31 (1988).

R. C. McPhedran, G. H. Derrick, L. C. Botten, “Theory of crossed grating,” in Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980), p. 249.

H. Kogelnik, “Theory of dielectric waveguides,” in Integrated Optics, T. Tamir, ed. (Springer, Berlin, 1975), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics