Abstract

We demonstrate that holographic Bragg reflector grating structures, which are photolithographically scribed in planar waveguides, support a unique approach to apodization and overlay that uses fixed-depth etching and partial contour writing to achieve continuous reflective amplitude control.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  2. J. L. Rebola, A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
    [CrossRef]
  3. A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
    [CrossRef]
  4. T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
    [CrossRef]
  5. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32–39 (2003).
    [CrossRef]
  6. K. O. Hill, B. Malo, F. Bilodeau, S. Theriault, D. C. Johnson, J. Albert, “Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing,” Opt. Lett. 20, 1438–1440 (1995).
    [CrossRef] [PubMed]
  7. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
    [CrossRef]
  8. D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
    [CrossRef]
  9. D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
    [CrossRef]
  10. Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
    [CrossRef]
  11. T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26, 414–416 (2001).
    [CrossRef]
  12. C. Greiner, D. Iazikov, T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.
  13. T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
    [CrossRef]
  14. R. H. Jordan, D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84–94 (1995).
    [CrossRef]
  15. R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
    [CrossRef]
  16. A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
    [CrossRef]
  17. C. Olson, D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
    [CrossRef]
  18. S. Kristjansson, N. Eriksson, A. Larsson, R. S. Penner, M. Fallahi, “Observation of stable cylindrical modes in electrically pumped circular grating-coupled surface-emitting lasers,” Appl. Opt. 39, 1946–1953 (2000).
    [CrossRef]
  19. J. Backlund, J. Bengtsson, C. Carlstrom, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
    [CrossRef]
  20. M. Li, B. S. Luo, C. P. Grover, Y. Feng, H. C. Liu, “Waveguide grating coupler with a tailored spectral response based on a computer-generated waveguide hologram,” Opt. Lett. 24, 655–657 (1999).
    [CrossRef]
  21. J. Backlund, J. Bengtsson, C. Carlstrom, A. Larsson, “Input waveguide grating couplers designed for a desired wavelength and polarization response,” Appl. Opt. 41, 2818–2825 (2002).
    [CrossRef] [PubMed]
  22. C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
    [CrossRef]
  23. C. Greiner, T. W. Mossberg, D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

2003

2002

J. L. Rebola, A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
[CrossRef]

J. Backlund, J. Bengtsson, C. Carlstrom, A. Larsson, “Input waveguide grating couplers designed for a desired wavelength and polarization response,” Appl. Opt. 41, 2818–2825 (2002).
[CrossRef] [PubMed]

2001

2000

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

C. Olson, D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[CrossRef]

S. Kristjansson, N. Eriksson, A. Larsson, R. S. Penner, M. Fallahi, “Observation of stable cylindrical modes in electrically pumped circular grating-coupled surface-emitting lasers,” Appl. Opt. 39, 1946–1953 (2000).
[CrossRef]

1999

J. Backlund, J. Bengtsson, C. Carlstrom, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[CrossRef]

M. Li, B. S. Luo, C. P. Grover, Y. Feng, H. C. Liu, “Waveguide grating coupler with a tailored spectral response based on a computer-generated waveguide hologram,” Opt. Lett. 24, 655–657 (1999).
[CrossRef]

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
[CrossRef]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[CrossRef]

R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
[CrossRef]

A. A. Tovar, G. H. Clark, “Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems,” J. Opt. Soc. Am. A 14, 3333–3340 (1997).
[CrossRef]

1995

1994

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

1992

T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
[CrossRef]

1990

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Albert, J.

Azana, J.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Backlund, J.

Baker, N.

Bengtsson, J.

Besley, J. A.

Bilodeau, F.

Bona, G. L.

D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

Carballar, A.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Carlstrom, C.

Cartaxo, A. V. T.

J. L. Rebola, A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
[CrossRef]

Clark, G. H.

David, C.

D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
[CrossRef]

Eriksson, N.

Erni, D.

D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

Fallahi, M.

Feng, Y.

Germann, R.

D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

Greiner, C.

C. Greiner, D. Iazikov, T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.

C. Greiner, T. W. Mossberg, D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

Grover, C. P.

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Hall, D. G.

C. Olson, D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[CrossRef]

R. H. Jordan, D. G. Hall, O. King, G. Wicks, S. Rishton, “Lasing behavior of circular grating surface emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449–453 (1997).
[CrossRef]

R. H. Jordan, D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84–94 (1995).
[CrossRef]

T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
[CrossRef]

Henry, C. H.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Hill, K. O.

Iazikov, D.

C. Greiner, D. Iazikov, T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.

C. Greiner, T. W. Mossberg, D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

Jackel, H.

Johnson, A. E.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Johnson, D. C.

Jordan, R. H.

Kazarinov, R. F.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

King, O.

Kistler, R. C.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Komukai, T.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[CrossRef]

Kondo, Y.

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

Kristjansson, S.

Larsson, A.

Li, M.

Lim, C.

Liu, H. C.

Luo, B. S.

Malo, B.

Maniloff, E. S.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Marra, C.

Mossberg, T. W.

T. W. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26, 414–416 (2001).
[CrossRef]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

C. Greiner, D. Iazikov, T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.

C. Greiner, T. W. Mossberg, D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

Munroe, M. J.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Muriel, M. A.

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
[CrossRef]

Nakazawa, M.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[CrossRef]

Nirmalathas, A.

Novak, D.

Oku, S.

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

Olson, C.

C. Olson, D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[CrossRef]

Orlowsky, K. J.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Penner, R. S.

Pol, V.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Rebola, J. L.

J. L. Rebola, A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
[CrossRef]

Reekie, L.

Rishton, S.

Shani, Y.

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

Shibata, Y.

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

Sweetser, J. N.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Tamamura, T.

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

Tamura, K.

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[CrossRef]

Theriault, S.

Tovar, A. A.

Weeks, C.

Wicks, G.

Wiesmann, D.

D. Wiesmann, R. Germann, G. L. Bona, C. David, D. Erni, H. Jackel, “Add-drop filter based on apodized surface-corrugated gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fibre Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

IEEE J. Quantum Electron.

C. Olson, D. G. Hall, “Azimuthal mode discrimination in radially chirped concentric-circle-grating distributed feedback lasers,” IEEE J. Quantum Electron. 36, 1016–1025 (2000).
[CrossRef]

T. Erdogan, D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Shibata, T. Tamamura, S. Oku, Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6, 1222–1224 (1994).
[CrossRef]

D. Wiesmann, C. David, R. Germann, D. Erni, G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles,” IEEE Photonics Technol. Lett. 12, 639–641 (2000).
[CrossRef]

A. Carballar, M. A. Muriel, J. Azana, “Fiber grating filter for WDM systems: an improved design,” IEEE Photonics Technol. Lett. 11, 694–696 (1999).
[CrossRef]

T. Komukai, K. Tamura, M. Nakazawa, “An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering,” IEEE Photonics Technol. Lett. 9, 934–936 (1997).
[CrossRef]

J. Lightwave Technol.

C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, N. Baker, “Wavelength-interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32–39 (2003).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

J. L. Rebola, A. V. T. Cartaxo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 8, 1537–1544 (2002).
[CrossRef]

C. H. Henry, R. F. Kazarinov, Y. Shani, R. C. Kistler, V. Pol, K. J. Orlowsky, “Four-channel wavelength division multiplexers and bandpass filters based on elliptical Bragg reflectors,” J. Lightwave Technol. 8, 748–755 (1990).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Other

C. Greiner, D. Iazikov, T. W. Mossberg, “Lithographically scribed, focusing, planar holographic Bragg reflector with 17-GHz passband and 0.3 cm2 footprint,” presented at the Optical Fiber Communication Conference, postdeadline Paper PD31, Atlanta, Ga., March 23–28, 2003.

C. Greiner, T. W. Mossberg, D. Iazikov, “Bandpass engineering of lithographically scribed channel-waveguide Bragg gratings,” Opt. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of an HBR. Curved contours represent diffractive elements lithographically scribed into the slab waveguide. Each contour backscatters a portion of the entering signal field and focuses it onto the output port. In the devices fabricated for this study, the contours are circular with a common center of curvature shown. The partial-fill effective gray-scale approach to amplitude apodization is shown on the left. The fraction of the contour that is actually populated with an etched trench controls the overall effective amplitude of the field backscattered to the output port by the contour.

Fig. 2
Fig. 2

Simulated output power as a function of position along the output plane for partially written diffractive contours of (a) 1, (b) 10, (c) 100, and (d) 1000, showing the decrease in sidelobe power with increasing contour count. The primary output image is located at 200 μm.

Fig. 3
Fig. 3

Simulated output power as a function of position along the output plane for two partially written, 100-contour HBR structures with (dashed curve) and without (solid curve) angular shifts between scribing patterns of successive diffractive contours.

Fig. 4
Fig. 4

Simulated output power as a function of position along the output plane for (a) 10 and (b) 1000 fully written continuous diffractive contours. The primary output image is located at 200 μm.

Fig. 5
Fig. 5

Measured output power as a function of position along the output plane for (a) fully written first-order HBR, (b) partially written (0.33 fraction) first-order HBR, and (c) superimposed fully and partially written HBR measurements. The lower dotted curve in (a) and (b) represents a background light power level that corresponds primarily to the input signal scattered off the square-cut die boundaries.

Fig. 6
Fig. 6

Superimposed reflection spectra of a 0.33 gray-scale first-order HBR (dotted curve) and a fully written third-order HBR (solid curve). Spectral widths and peak reflectivity are essentially identical, confirming the ability of partial-fill gray scale to control reflection amplitude.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E out k     contour   k   E in r a k r ,

Metrics