Abstract

We investigate a digital holographic microscope that permits us to modify the spatial coherence state of the sample illumination by changing the spot size of a laser beam on a rotating ground glass. Out-of-focus planes are refocused by digital holographic reconstruction with numerical implementation of the Kirchhoff-Fresnel integral. The partial coherence nature of the illumination reduces the coherent artifact noise with respect to fully coherent illumination. The investigated configuration allows the spatial coherence state to be changed without modifying the illumination level of the sample. The effect of the coherence state on the digital holographic reconstruction is theoretically and experimentally evaluated. We also show how multiple reflection interferences are limited by the use of reduced spatial coherent illumination.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars, W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  2. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, London, 1993), pp. 94–140.
  3. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  4. B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
    [CrossRef]
  5. T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 1997 (Akademie, Berlin, 1997), pp. 353–363.
  6. B. Nilsson, T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998).
    [CrossRef]
  7. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  8. D. O. Hogenboom, C. A. Dimarzio, T. J. Gaudette, A. J. Devaney, S. C. Lindberg, “Three-dimensional images generated by quadrature interferometry,” Opt. Lett. 23, 783–785 (1998).
    [CrossRef]
  9. M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998).
    [CrossRef]
  10. B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).
  11. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
    [CrossRef]
  12. F. Dubois, O. Monnom, C. Yourassowsky, J.-C. Legros, “Border processing in digital holography by extension of the digital hologram and reduction of the higher spatial frequencies,” Appl. Opt. 41, 2621–2626 (2002).
    [CrossRef] [PubMed]
  13. F. Dubois, C. Minetti, O. Monnom, C. Yourassowsky, J.-C. Legros, “Pattern recognition with digital holographic microscope working in partially coherent illumination,” Appl. Opt. 41, 4108–4119 (2002).
    [CrossRef] [PubMed]
  14. T. Zhang, I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
    [CrossRef]
  15. Y. Takaki, H. Ohzu, “Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles,” Appl. Opt. 39, 5302–5308 (2000).
    [CrossRef]
  16. I. Yamaguchi, J.-I. Kato, S. Otha, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [CrossRef]
  17. F. Dubois, L. Joannes, J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  18. P. Klysubun, G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A 18, 326–331 (2001).
    [CrossRef]
  19. P. Klysubun, G. Indebetouw, “Spatiotemporal digital microholography,” J. Opt. Soc. Am. A 18, 319–325 (2001).
    [CrossRef]
  20. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
    [CrossRef]
  21. G. Indebetouw, T. Kim, T.-C. Poon, B. W. Schilling, “Three-dimensional location of fluorescent inhomogeneities in turpid media by scanning heterodyne holography,” Opt. Lett. 23, 135–137 (1998).
    [CrossRef]
  22. P. Chavel, “Optical noise and temporal coherence,” J. Opt. Soc. Am. 70, 935–943 (1980).
    [CrossRef]
  23. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  24. M. Nazarathy, J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am. 70, 150–159 (1980).
    [CrossRef]
  25. D. W. Robinson, G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, London, 1993).

2002

2001

2000

B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).

Y. Takaki, H. Ohzu, “Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles,” Appl. Opt. 39, 5302–5308 (2000).
[CrossRef]

1999

1998

1997

I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef] [PubMed]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

1996

B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
[CrossRef]

1994

1980

Adams, M.

M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998).
[CrossRef]

Becker, J.

B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
[CrossRef]

Bevilacqua, F.

Carlsson, T. E.

Chavel, P.

Creath, K.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, London, 1993), pp. 94–140.

Cuche, E.

Depeursinge, C.

Devaney, A. J.

Dewandel, J. L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Dimarzio, C. A.

Dubois, F.

Dupont, O.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Gaudette, T. J.

Goodman, J.

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Hogenboom, D. O.

Indebetouw, G.

Javidi, B.

B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).

Joannes, L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

F. Dubois, L. Joannes, J.-C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

Jüptner, W.

Jüptner, W. P. O.

T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 1997 (Akademie, Berlin, 1997), pp. 353–363.

M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998).
[CrossRef]

Kato, J.-I.

Kim, T.

Klysubun, P.

Kreis, T. M.

M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998).
[CrossRef]

T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 1997 (Akademie, Berlin, 1997), pp. 353–363.

Legros, J. C.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Legros, J.-C.

Lindberg, S. C.

Minetti, C.

Mizuno, J.

Monnom, O.

Nazarathy, M.

Nilsson, B.

Ohzu, H.

Otha, S.

Poon, T.-C.

G. Indebetouw, T. Kim, T.-C. Poon, B. W. Schilling, “Three-dimensional location of fluorescent inhomogeneities in turpid media by scanning heterodyne holography,” Opt. Lett. 23, 135–137 (1998).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Schilling, B. W.

G. Indebetouw, T. Kim, T.-C. Poon, B. W. Schilling, “Three-dimensional location of fluorescent inhomogeneities in turpid media by scanning heterodyne holography,” Opt. Lett. 23, 135–137 (1998).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Schnars, U.

Shamir, J.

Shinoda, K.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Skarman, B.

B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
[CrossRef]

Storrie, B.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Suzuki, Y.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Tajahuerce, E.

B. Javidi, E. Tajahuerce, “Encrypting three-dimensional information with digital holography,” Opt. Lett. 39, 6595–6601 (2000).

Takaki, Y.

Wozniac, K.

B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
[CrossRef]

Wu, M. H.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 19, 1506–1508 (1997).
[CrossRef]

Yamaguchi, I.

Yourassowsky, C.

Zhang, T.

Appl. Opt.

Flow Meas. Instrum.

B. Skarman, K. Wozniac, J. Becker, “Simultaneous 3D-PIV and temperature measurement using a New CCD based holographic interferometer,” Flow Meas. Instrum. 7, 1–6 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol. 10, 934–945 (1999).
[CrossRef]

Opt. Lett.

Other

M. Adams, T. M. Kreis, W. P. O. Jüptner, “Particle size and position measurement with digital holography,” in Optical Inspection and Micromeasurements II, C. Gorecki, ed., Proc. SPIE3098, 234–240 (1998).
[CrossRef]

T. M. Kreis, W. P. O. Jüptner, “Principle of digital holography,” in Fringe ’97: Proceedings of the Third International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 1997 (Akademie, Berlin, 1997), pp. 353–363.

K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis: Digital Fringe Pattern Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics, London, 1993), pp. 94–140.

D. W. Robinson, G. T. Reid, eds., Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, London, 1993).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical setup of the digital holographic microscope.

Fig. 2
Fig. 2

Geometry analyzed for outlining the effect of partial coherent illumination on digital holographic reconstruction.

Fig. 3
Fig. 3

Refocusing of the test target. (a) Refocusing distance d = 50 μm; Speckle size σ = 12 μm. (b) Refocusing distance d = 50 μm; speckle size σ = 200 μm. (c) Refocusing distance d = 100 μm; speckle size σ = 12 μm. (d) Refocusing distance d = 100 μm; speckle size σ = 200 μm. (e) Refocusing distance d = 200 μm; speckle size σ = 12 μm. (f) Refocusing distance d = 200 μm; speckle size σ = 200 μm.

Fig. 4
Fig. 4

Refocused onion peel image. (a) Refocusing distance d = 50 μm; speckle size σ = 12 μm. (b) Refocusing distance d = 50 μm; speckle size σ = 200 μm.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ϕx, y=tan-1I4x, y-I2x, yI1x, y-I3x, y,
γx1, y1, x2, y2=Iδx1-x2, y1-y2×px1, y1px2, y2,
Γx1-x2, y1-y2=IP*P×x1-x2λf2, y1-y2λf2,
uox, y=expjkdFCx,y-1exp-jkdλ22×νx2+νy2FCνx,νy+1uix, y,
FCη,ξ±1gα, β=--exp±2jπαη+βξgα, βdαdβ.
uosΔ, tΔ=expjkdFs,t-1exp-jkλ2d2N2Δ2U2+V2FU,V+1uisΔ, tΔ,
Fm,n±1gk, l=1Nk,l=0N-1exp±2πjNmk+nlgk, l,
uUPx, y=Ctx, yexpj2π xxi+yyiλf2,
uFPx, y=C expj2π xix+yiyλf2×exp-j 2πdλf22xi2+yi2×Tfx-df2 xi, y-df2 yi,
Tfx-df2 xi, y-df2 yi= dνxdνy×expj2πνxx-df2 xi+νyy-df2 yi×exp-j kλ2d2νx2+νy2Tνx, νy,
uFPx, y=C expj2π xix+yiyλf2×Tfx-df2 xi, y-df2 yi.
uREFx, y=C expj2π xix+yiyλf2,
iFPx, y=|uREFx, y+uFPx, y|2=|C|2+|CTf|2+ATf+A*Tf*,
vx, y, d=A  Ip2xi, yiTfx-df2 xi,×y-df2 yidxidyi.
Vνx, νy, d=FCνx,νy+1Tfx, ySνxdf2, νydf2,
rx, y=expjϕx, y,
r*x, yrx, y=δx-x, y-y,
sx, y=expj2kf2PRxλf2, yλf2,
sx, y=A expjkdFCx,y-1exp-jkdλ22νx2+νy2FCνx,νy+1sx, y,
sx, y=A expikdFCx,y-1exp-jkdλ22νx2+νy2r-νxλf2, -νyλf2p-νxλf2, -νyλf2.
px, y  exp-x2+y2w2,
dw2λf22  1.
σo=λzD.

Metrics