Abstract

We propose to use optical correlation to measure the quality of an optical link in real time, staying completely within the optical domain. We transmit a test signal of 010 and correlate the received (degraded) signal with 010. The strength and shape of the output measure dispersion and attenuation in just 3 bit periods (75 ps at 40 Gb/s) compared with minutes by traditional methods. Correlation becomes feasible owing to the recent development of tapped delay lines with very large numbers of taps. We present simulations showing that this technique can detect attenuation, dispersion, noise, and jitter. With this instantaneous quality-of-service information available to all nodes in a network, new protocols will enable the network to select paths based on quality, allowing service providers to take into account the system’s physical impairments when selecting new light paths or when restoring existing ones and to guarantee varying levels of service. We present one such protocol.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Anderson, R. Mital, “Polynomial-based optical true-time delay devices using MEMs,” Appl. Opt. 41, 5449–5461 (2002).
    [CrossRef] [PubMed]
  2. C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
    [CrossRef]
  3. P. H. Ho, H. T. Mouftah, “A novel routing protocol for WDM mesh networks,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 38–39.
  4. J. Spath, “Dynamic routing strategies for WDM networks,” Computer Networks (Elsevier, New York, 2000), pp. 523–542.
  5. C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).
  6. J. Strand, A. Chiu, “Impairments and other constraints on optical layer routing,” http://www.ietf.org/internet-drafts/draft-ietf-ipo-impairments-04.txt . (Internet Engineering Task Force, May2001), retrieved December2002.
  7. I. Shakei, H. Takara, “Transparent and flexible performance monitoring using amplitude histogram method,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 19–21.
    [CrossRef]
  8. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 868–689.
  9. R. A. Sprague, C. L. Koliopoulos, “Time integrating acousto-optic correlator,” Appl. Opt. 15, 89–92 (1976).
    [CrossRef] [PubMed]
  10. R. J. Berinato, “Acousto-optic tapped delay line filter,” Appl. Opt. 32, 5797–5809 (1995).
    [CrossRef]
  11. J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
    [CrossRef]
  12. C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
    [CrossRef]
  13. J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
    [CrossRef]
  14. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
    [CrossRef]
  15. S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
    [CrossRef]
  16. G. W. Euliss, R. A. Athale, “Time-integrating correlator based on fiber-optic delay lines,” Opt. Lett. 19, 649–651 (1994).
    [CrossRef] [PubMed]
  17. A. G. Podoleanu, R. K. Harding, D. A. Jackson, “Low-cost high-speed multichannel fiber-optic correlator,” Opt. Lett. 20, 112–114 (1995).
    [CrossRef] [PubMed]
  18. D. M. Gookin, M. H. Berry, “Finite impulse response filter with large dynamic range and high sampling rate,” Appl. Opt. 29, 1061–1062 (1990).
    [CrossRef] [PubMed]
  19. K.-I. Kitayama, N. Wada, H. Sotobayashi, “Architectural considerations for photonic IP router based on optical code correlation,” J. Lightwave Technol. 18, 1834–1843 (2000).
    [CrossRef]
  20. N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 9-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999).
    [CrossRef]
  21. K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
    [CrossRef]
  22. S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001).
    [CrossRef]
  23. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,” J. Lightwave Technol. 20, 36–46 (2002).
    [CrossRef]
  24. B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
    [CrossRef]
  25. S. Yegnanarayanan, P. D. Trinh, B. Jalali, “Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access,” Opt. Lett. 21, 740–742 (1996).
    [CrossRef] [PubMed]
  26. P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
    [CrossRef]
  27. Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992).
    [CrossRef]
  28. B. Moslehi, “Fiber-optic filters employing optical amplifiers to provide design flexibility,” Electron. Lett. 28, 226–228 (1992).
    [CrossRef]
  29. P. C. Teh, P. Petropolous, M. Ibsen, D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple access encoders and decorders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
    [CrossRef]
  30. B. L. Anderson, C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912–4921 (2002).
    [CrossRef] [PubMed]
  31. A. Rader, B. L. Anderson, “Demonstration of a linear optical true-time delay device using a microelectromechanical mirror array,” Appl. Opt. 42, 1409–1416 (2003).
    [CrossRef] [PubMed]
  32. Ns-2 is available at http://www.isi.edu/nsnam/ns/ .

2003 (1)

2002 (4)

2001 (3)

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001).
[CrossRef]

P. C. Teh, P. Petropolous, M. Ibsen, D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple access encoders and decorders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

2000 (1)

1999 (2)

N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 9-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999).
[CrossRef]

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

1996 (1)

1995 (2)

1994 (2)

K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
[CrossRef]

G. W. Euliss, R. A. Athale, “Time-integrating correlator based on fiber-optic delay lines,” Opt. Lett. 19, 649–651 (1994).
[CrossRef] [PubMed]

1992 (3)

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992).
[CrossRef]

B. Moslehi, “Fiber-optic filters employing optical amplifiers to provide design flexibility,” Electron. Lett. 28, 226–228 (1992).
[CrossRef]

1990 (1)

1986 (1)

P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
[CrossRef]

1985 (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

1983 (1)

S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
[CrossRef]

1982 (1)

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

1977 (1)

C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
[CrossRef]

1976 (1)

Ali, M. A.

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

Anderson, B. L.

Assi, C.

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

Athale, R. A.

Berinato, R. J.

Berry, M. H.

Bowers, J. E.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

Campany, J.

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

Cascón, J.

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

Cassaboom, J. A.

C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
[CrossRef]

Chang, C. T.

C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
[CrossRef]

Chang, Y. L.

Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992).
[CrossRef]

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Euliss, G. W.

Goodman, J. W.

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Gookin, D. M.

Guo, D.

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

Habara, K.

K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
[CrossRef]

Harding, R. K.

Ho, P. H.

P. H. Ho, H. T. Mouftah, “A novel routing protocol for WDM mesh networks,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 38–39.

Hsu, C. F.

C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).

Hu, Y.

S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001).
[CrossRef]

Huang, N. F.

C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).

Ibsen, M.

Jackson, D. A.

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
[CrossRef]

Jalali, B.

Kitayama, K.

Kitayama, K.-I.

Koliopoulos, C. L.

Kurtz, R.

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

Lee, J. H.

Liddle, C. D.

Liu, T. L.

C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).

Marhic, M. E.

Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992).
[CrossRef]

Mital, R.

Moslehi, B.

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

B. Moslehi, “Fiber-optic filters employing optical amplifiers to provide design flexibility,” Electron. Lett. 28, 226–228 (1992).
[CrossRef]

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Mouftah, H. T.

P. H. Ho, H. T. Mouftah, “A novel routing protocol for WDM mesh networks,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 38–39.

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
[CrossRef]

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

Okuno, M.

K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
[CrossRef]

Ortega, B.

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

Pastor, D.

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

Petropolous, P.

Petropoulos, P.

Podoleanu, A. G.

Prucnal, P. R.

P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
[CrossRef]

Rader, A.

Richardson, D.

Richardson, D. J.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 868–689.

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
[CrossRef]

Sasayama, K.

K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
[CrossRef]

Shakei, I.

I. Shakei, H. Takara, “Transparent and flexible performance monitoring using amplitude histogram method,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 19–21.
[CrossRef]

Shami, A.

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
[CrossRef]

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

Sorin, W. V.

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

Sotobayashi, H.

Spath, J.

J. Spath, “Dynamic routing strategies for WDM networks,” Computer Networks (Elsevier, New York, 2000), pp. 523–542.

Sprague, R. A.

Takara, H.

I. Shakei, H. Takara, “Transparent and flexible performance monitoring using amplitude histogram method,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 19–21.
[CrossRef]

Taylor, H. F.

C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
[CrossRef]

Teh, P. C.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 868–689.

Trinh, P. D.

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

Wada, N.

Wan, S. P.

S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001).
[CrossRef]

Yegnanarayanan, S.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

S. A. Newton, K. P. Jackson, H. J. Shaw, “Optical fiber V-groove transversal filter,” Appl. Phys. Lett. 43, 149–151 (1983).
[CrossRef]

Electron. Lett. (3)

B. Moslehi, “Fiber-optic filters employing optical amplifiers to provide design flexibility,” Electron. Lett. 28, 226–228 (1992).
[CrossRef]

C. T. Chang, J. A. Cassaboom, H. F. Taylor, “Fibre-optic delay-line devices for R. F. signal processing,” Electron. Lett. 13, 678–680 (1977).
[CrossRef]

J. E. Bowers, S. A. Newton, W. V. Sorin, H. J. Shaw, “Filter response of single-mode fibre recirculating delay lines,” Electron. Lett. 18, 110–111 (1982).
[CrossRef]

IEEE Netw. (1)

C. Assi, A. Shami, M. A. Ali, R. Kurtz, D. Guo, “Optical networking and real-time provisioning: an integrate visions for the next generation Internet,” IEEE Netw. 15, 36–45 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Campany, J. Cascón, D. Pastor, B. Ortega, “Reconfigurable fiber-optic delay line filters incorporating electrooptic and electroabsorption modulators,” IEEE Photon. Technol. Lett. 11, 1174–1176 (1999).
[CrossRef]

S. P. Wan, Y. Hu, “Two-dimensional optical CDMA differential systems with prime/OOC codes,” IEEE Photon. Technol. Lett. 13, 1373–1375 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. MTT-33, 193–209 (1985).
[CrossRef]

J. Lightwave Technol. (8)

K.-I. Kitayama, N. Wada, H. Sotobayashi, “Architectural considerations for photonic IP router based on optical code correlation,” J. Lightwave Technol. 18, 1834–1843 (2000).
[CrossRef]

N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 9-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999).
[CrossRef]

K. Sasayama, M. Okuno, K. Habara, “Photonic FDM multichannel selector using coherent transversal filter,” J. Lightwave Technol. 12, 664–669 (1994).
[CrossRef]

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,” J. Lightwave Technol. 20, 36–46 (2002).
[CrossRef]

B. Moslehi, J. W. Goodman, “Novel amplified fiber optic recirculating delay line processor,” J. Lightwave Technol. 10, 1142–1146 (1992).
[CrossRef]

P. R. Prucnal, M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. LT-4, 547–554 (1986).
[CrossRef]

Y. L. Chang, M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952–1062 (1992).
[CrossRef]

P. C. Teh, P. Petropolous, M. Ibsen, D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple access encoders and decorders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352–1365 (2001).
[CrossRef]

Opt. Lett. (3)

Opt. Netw. Mag. (1)

C. F. Hsu, T. L. Liu, N. F. Huang, “On adaptive routing in wavelength-routed networks,” Opt. Netw. Mag. 3(1), 15–24 (2002).

Other (6)

J. Strand, A. Chiu, “Impairments and other constraints on optical layer routing,” http://www.ietf.org/internet-drafts/draft-ietf-ipo-impairments-04.txt . (Internet Engineering Task Force, May2001), retrieved December2002.

I. Shakei, H. Takara, “Transparent and flexible performance monitoring using amplitude histogram method,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 19–21.
[CrossRef]

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 868–689.

P. H. Ho, H. T. Mouftah, “A novel routing protocol for WDM mesh networks,” Conference on Optical Fiber Communication, Vol. 70 of 2002 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2002), pp. 38–39.

J. Spath, “Dynamic routing strategies for WDM networks,” Computer Networks (Elsevier, New York, 2000), pp. 523–542.

Ns-2 is available at http://www.isi.edu/nsnam/ns/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical correlator based on a tapped delay line.

Fig. 2
Fig. 2

Sent and received test signals.

Fig. 3
Fig. 3

Fiber-based tapped delay-line examples: (a) 1 × N splitter style and (b) 2 × 2 coupler-splitter style.

Fig. 4
Fig. 4

Effect of attenuation on the correlation peak. Rcv’d = received signals.

Fig. 5
Fig. 5

(a) Dispersion modeled with a cosine wave to make the transitions from 0 to 1 and from 1 to 0. The case for 20% is shown. (b) Effect of dispersion on the correlation signal.

Fig. 6
Fig. 6

Effect of noise on correlation function. (a) Fifty separate correlations are superimposed for 20% noise; (b) Measurement of the area of the correlation function that exceeds a certain threshold during a specified time interval; (c) Average and range of the correlation peak area as a function of percent noise.

Fig. 7
Fig. 7

Fifty superimposed correlations, with jitter varying randomly with standard deviation σj = 10% jitter.

Fig. 8
Fig. 8

Area of the correlation function that is greater than the 50% threshold and within the time window in which the ideal correlation function exceeds 50%. The independent variable is jitter, with dispersion as a varying parameter.

Fig. 9
Fig. 9

Simulated eye diagram. The shaded area is the open eye area.

Fig. 10
Fig. 10

Variation in the open area of the eye diagram for combined jitter and dispersion. Compare this with the corresponding correlation area of Fig. 8.

Fig. 11
Fig. 11

Topology for self-learning domain-based optical routing protocol. Each domain contains various border nodes (Bs) that exchange information about the quality and cost of each connection.

Fig. 12
Fig. 12

Comparison of the quality-based (QORP) and the availability-based protocols with a seven-link quality degradation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ct=-strt-τdt
ct=k=0N-1skrt-kτk.
CLi=CLis/AC-NLi   if NLi < AC,
CP=i=1n CLi.
QDP=i=1nQDLi,

Metrics