Abstract

The contrast-to-noise ratio (CNR) was used to determine the detectability of objects within reconstructed images from diffuse near-infrared tomography. It was concluded that there was a maximal value of CNR near the location of an object within the image and that the size of the true region could be estimated from the CNR. Experimental and simulation studies led to the conclusion that objects can be automatically detected with CNR analysis and that our current system has a spatial resolution limit near 4 mm and a contrast resolution limit near 1.4. A new linear convolution method of CNR calculation was developed for automated region of interest (ROI) detection.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
    [CrossRef] [PubMed]
  2. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  3. V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
    [CrossRef] [PubMed]
  4. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
    [PubMed]
  5. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
    [CrossRef] [PubMed]
  6. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
    [CrossRef]
  7. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
    [CrossRef] [PubMed]
  8. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
    [CrossRef] [PubMed]
  9. T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
    [CrossRef]
  10. B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
    [CrossRef]
  11. X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
    [CrossRef]
  12. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
    [CrossRef]
  13. B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
    [CrossRef]
  14. C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
    [CrossRef]
  15. J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
    [CrossRef]
  16. M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
    [CrossRef] [PubMed]
  17. K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
    [CrossRef]
  18. H. H. Barrett, C. K. Abbey, E. Clarkson, “Objective assessment of image quality. III. ROC metrics, ideal observers and likelihood-generating functions,” J. Opt. Soc. Am. A 15, 1520–1535 (1998).
    [CrossRef]
  19. H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
    [CrossRef] [PubMed]
  20. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
    [CrossRef]
  21. S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
    [CrossRef]

2003 (3)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

2001 (6)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

2000 (1)

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

1999 (2)

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

1998 (1)

1997 (2)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

1995 (1)

K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

1990 (1)

C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
[CrossRef]

Abbey, C. K.

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Bamber, J. C.

C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
[CrossRef]

Barbour, R. L.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Barrett, H. H.

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
[CrossRef] [PubMed]

Clarkson, E.

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cosgrove, D. O.

C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
[CrossRef]

Dehghani, H.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

Demidenko, E.

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

Doyley, M. M.

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Fantini, S.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Faulkner, K.

K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Franceschini, M. A.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Hielscher, A. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Hill, C. R.

C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
[CrossRef]

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Huesman, R. H.

J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
[CrossRef]

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Jiang, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Kennedy, F. E.

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

Klein, G. J.

J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
[CrossRef]

Kogel, C.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Kotre, C. J.

K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Lasker, J. M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Locker, M.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

McBride, T. O.

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

Moesta, K. T.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
[CrossRef] [PubMed]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Paulsen, K. D.

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pogue, B. W.

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).
[CrossRef]

Poplack, S. P.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–145 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Prewitt, J.

Qi, J.

J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
[CrossRef]

Robinson, K. J.

K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Schlag, P. M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Schmitz, C. H.

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Song, X.

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Van Houten, E. E.

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Weaver, J. B.

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Willscher, C.

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Acad. Radiol. (1)

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8, 211–218 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Br. J. Radiol. (1)

K. J. Robinson, C. J. Kotre, K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography,” Br. J. Radiol. 68, 277–282 (1995).
[CrossRef]

Breast Cancer Res. (1)

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–46 (2001).
[CrossRef] [PubMed]

Clin. Phys. Physiol. Meas. (1)

C. R. Hill, J. C. Bamber, D. O. Cosgrove, “Performance criteria for quantitative ultrasonography and image parameterisation,” Clin. Phys. Physiol. Meas. 11(Suppl A), 57–73 (1990).
[CrossRef]

IEEE Med. Imaging (2)

B. W. Pogue, X. Song, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part I. Theory and simulations,” IEEE Med. Imaging 21, 755–763 (2002).
[CrossRef]

X. Song, B. W. Pogue, T. D. Tosteson, T. O. McBride, S. Jiang, K. D. Paulsen, “Statistical analysis of non-linearly reconstructed near-infrared tomographic images. Part II. Experimental interpretation,” IEEE Med. Imaging 21, 764–772 (2002).
[CrossRef]

IEEE Trans. Med. Imaging (1)

T. D. Tosteson, B. W. Pogue, E. Demidenko, T. O. McBride, K. D. Paulsen, “Confidence maps and confidence intervals for near infrared images in breast cancer,” IEEE Trans. Med. Imaging 18, 1188–1193 (1999).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

J. Qi, G. J. Klein, R. H. Huesman, “Image properties of list-mode likelihood reconstruction for a rectangular positron emission mammograph with DOI measurements,” IEEE Trans. Nucl. Sci. 48, 1343–1349 (2001).
[CrossRef]

J. Biomed. Opt. (1)

S. Jiang, B. W. Pogue, T. O. McBride, K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating pre-calibration phantom,” J. Biomed. Opt. 8, 308–315 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

M. M. Doyley, J. B. Weaver, E. E. Van Houten, F. E. Kennedy, K. D. Paulsen, “Thresholds for detecting and characterizing focal lesions using steady-state magnetic resonance elastography,” Med. Phys. 30, 495–504 (2003).
[CrossRef] [PubMed]

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography,” Med. Phys. 27, 2693–2700 (2000).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473,(1997).
[CrossRef] [PubMed]

Radiology (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).
[PubMed]

Rev. Sci. Instrum. (2)

C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002).
[CrossRef]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, “Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo,” Rev. Sci. Instrum. 72, 1817–1824 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Geometry of the simulation for optical property distribution, and (b) a typical reconstructed absorption coefficient image. The image in (b) was generated with simulated forward data with a 1% noise in amplitude and a 1° noise phase shift by use of zero-mean Gaussian distribution.

Fig. 2
Fig. 2

NIR tomographic imaging system (partial view).

Fig. 3
Fig. 3

Schematic showing the three possible choices of backgrounds: (a) sampled at the same radial location as the lesion object, (b) randomly sampled, or (c) sampled by use of the entire region outside of the target lesion object.

Fig. 4
Fig. 4

Two methods of ROI detection: (a) Detection by a search for the maximum CNR from all the possible locations in the image field where alternate possible locations are randomly tested and the sizes of these regions are varied. This approach is used to determine when the CNR calculation is maximal and yields an estimate of the size and location of the ROI but requires a significant amount of computational time to achieve the result. (b) 2-D linear convolution method where ⊗ denotes the convolution process.

Fig. 5
Fig. 5

Graphs of CNR distribution (the color bar represents CNR values) obtained by the three different methods of choosing the background areas including (a) CNRI, (b) CNRII, and (c) CNRIII. (d) Based on the method shown in (c), the contrast-detail curve for the images are plotted in by a detection threshold with a CNR of 4.

Fig. 6
Fig. 6

Reconstructed absorption images for (a) the target with the large size (23 mm in diameter) and low contrast (1.4) and (b) the target with the small size (3 mm in diameter) and high contrast (3.6) in which CNR is greater than 4 by all three calculation methods.

Fig. 7
Fig. 7

Distance error between the detected center of the ROI in the reconstructed image relative to the real location of the circular ROI center is plotted as a function of the diameter of the ROI by use of absorption contrast values of (a) 2.0, (b) 3.0, (c) 4.0, and (d) 5.0 in the target relative to the background.

Fig. 8
Fig. 8

Photograph of the phantom used in our study. The 4-mm-diameter hole is filled with an Intralipid and ink solution with a variable absorption contrast from 2:1 to 9:1 and a similar scattering coefficient. Note that the 4-mm hole is outlined with dark ink to make it visible, but this ink on the upper surface of the phantom does not affect the image quality of the interior of the phantom.

Fig. 9
Fig. 9

Reconstructed images of the absorption coefficient (μ a ), with the object size of 4 mm in diameter and the absorption contrast equal to (a) 2:1, (b) 4:1, (c) 6:1, and (d) 9:1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

CNRI=contrastnoise=Δμnoise=μROI-μmeanσROI2+σmean2/21/2,
CNRII=μROI-μrandomσROI2+σrandom2/21/2,
CNRIII=μROI-μbackgroundwROIσROI2+wbackgroundσbackground21/2,

Metrics