Abstract

Photobleaching and recovery of 488-nm excited fluorescence from resected human breast tissue samples have been studied. Profiles of photobleaching decay were seen to be faster in cancerous tissue than in those of the normal tissue. The reverse behavior was observed in profiles of recovery after photobleaching. A theoretical model based on one-dimensional diffusion theory has been developed to provide insight into the phenomena of fluorescence during photobleaching and recovery in a multiply scattering medium such as tissue. To understand photobleaching and recovery with the help of this theoretical model, we carried out experiments with model media that were prepared with authentic fluorophores, scatterers, and absorbers. The results of these studies suggest that the fluorescence photobleaching profiles are affected more by the absorption than by the scattering properties of a turbid medium such as tissue. In contrast, the scattering properties of the medium are found to affect the fluorescence recovery profiles to a greater extent. These observations could be related to the observed difference in fluorescence photobleaching and recovery profiles of normal and cancerous breast tissues.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
    [CrossRef]
  2. C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
    [CrossRef] [PubMed]
  3. R. R. Kortum, E. S. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef]
  4. B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).
  5. Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).
  6. T. Hirschfeld, “Quantum efficiency independence of the time integrated emission from a fluorescent molecule,” Appl. Opt. 15, 3135–3139 (1976).
    [CrossRef] [PubMed]
  7. R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
    [CrossRef]
  8. J. Moan, “Photoproducts formed from photofrin II in cells,” J. Photochem. Photobiol. 1, 429–436 (1988).
    [CrossRef]
  9. J. Moan, “Effect of bleaching of porphyrin sensitizers during photodynamic therapy,” Cancer Lett. 33, 45–53 (1986).
    [CrossRef] [PubMed]
  10. T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
    [CrossRef] [PubMed]
  11. G. Streckyte, R. Rotomskis, “Phototransformations of porphyrins in aqueous and micellar media,” J. Photochem. Photobiol. B 18, 259–263 (1993).
    [CrossRef] [PubMed]
  12. S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–169 (1993).
    [CrossRef]
  13. H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
    [CrossRef] [PubMed]
  14. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
    [CrossRef] [PubMed]
  15. B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
    [CrossRef] [PubMed]
  16. G. Carrero, “Diffusion process monitored by fluorescence recovery after photobleaching: some theoretical aspects,” presented at the meeting of the Canadian Applied and Industrial Mathematics Society, Victoria, B.C., Canada, 7–9 June 2001.
  17. J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
    [CrossRef]
  18. E. P. Browne, T. A. Hatton, “A fluorescence recovery after photobleaching (FRAP) technique for the measurement of solute transport across surfactant-laden interfaces,” presented at the 3rd Microgravity Fluid Physics Conference, Cleveland, Ohio, 13 June 1996.
  19. A. A. Stratonnikov, V. S. Polikarpov, V. B. Loschenov, “Photobleaching of endogenous fluorochromes in tissues in vivo during laser irradiation,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 13–24 (2000).
  20. T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
    [CrossRef]
  21. T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).
  22. S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
    [CrossRef]
  23. M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2270 (1989).
    [CrossRef] [PubMed]
  24. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
    [CrossRef]
  25. S. K. Mohanty, N. Ghosh, S. K. Majumder, P. K. Gupta, “Depolarization of autofluorescence from malignant and normal human breast tissues,” Appl. Opt. 40, 1147–1154 (2001).
    [CrossRef]
  26. W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1996), pp. 131–206.
  27. R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
    [CrossRef] [PubMed]
  28. R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
    [CrossRef]
  29. N. Ghosh, S. K. Mohanty, S. K. Majumdar, P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
    [CrossRef]
  30. M. S. Nair, N. Ghosh, N. Sundar Raju, A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41, 4024–4035 (2002).
    [CrossRef] [PubMed]
  31. L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
    [CrossRef]

2002 (1)

2001 (3)

1998 (2)

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

1997 (1)

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

1996 (2)

R. R. Kortum, E. S. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
[CrossRef]

1993 (1)

G. Streckyte, R. Rotomskis, “Phototransformations of porphyrins in aqueous and micellar media,” J. Photochem. Photobiol. B 18, 259–263 (1993).
[CrossRef] [PubMed]

1991 (1)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

1989 (2)

1988 (3)

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

J. Moan, “Photoproducts formed from photofrin II in cells,” J. Photochem. Photobiol. 1, 429–436 (1988).
[CrossRef]

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

1987 (2)

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

1986 (1)

J. Moan, “Effect of bleaching of porphyrin sensitizers during photodynamic therapy,” Cancer Lett. 33, 45–53 (1986).
[CrossRef] [PubMed]

1982 (1)

J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
[CrossRef]

1979 (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

1976 (2)

T. Hirschfeld, “Quantum efficiency independence of the time integrated emission from a fluorescent molecule,” Appl. Opt. 15, 3135–3139 (1976).
[CrossRef] [PubMed]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Agarwal, A.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Alfano, R. R.

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

Axelrod, D.

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Backman, V.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Bagdonas, S.

R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
[CrossRef]

Benson, R. C.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

Bhawna, B.

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Boyle, D. G.

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Browne, E. P.

E. P. Browne, T. A. Hatton, “A fluorescence recovery after photobleaching (FRAP) technique for the measurement of solute transport across surfactant-laden interfaces,” presented at the 3rd Microgravity Fluid Physics Conference, Cleveland, Ohio, 13 June 1996.

Carrero, G.

G. Carrero, “Diffusion process monitored by fluorescence recovery after photobleaching: some theoretical aspects,” presented at the meeting of the Canadian Applied and Industrial Mathematics Society, Victoria, B.C., Canada, 7–9 June 2001.

Celmer, E. J.

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

Chia, T. C.

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

Choy, D. S. J.

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

Costello, B.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Diong, C. H.

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

Dougherty, T. J.

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Elson, E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Feld, M. S.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Ghosh, N.

Gofstein, G.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–169 (1993).
[CrossRef]

Grundfest, W. S.

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

Gupta, P. K.

Gupta, S.

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Hamano, T.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Hatton, T. A.

E. P. Browne, T. A. Hatton, “A fluorescence recovery after photobleaching (FRAP) technique for the measurement of solute transport across surfactant-laden interfaces,” presented at the 3rd Microgravity Fluid Physics Conference, Cleveland, Ohio, 13 June 1996.

Hearst, J. E.

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

Hirschfeld, T.

Hoyt, C. C.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Huang, Z.

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

Itzkan, I.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Jacques, S. L.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–169 (1993).
[CrossRef]

Joseph, R.

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–169 (1993).
[CrossRef]

Kelin, M. P.

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

Kittrel, C.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Koppel, D. E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Kortum, R. R.

R. R. Kortum, E. S. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Kramer, J. R.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Laxmi, B. V.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

LeCarpentier, G.

Lima, C.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Loschenov, V. B.

A. A. Stratonnikov, V. S. Polikarpov, V. B. Loschenov, “Photobleaching of endogenous fluorochromes in tissues in vivo during laser irradiation,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 13–24 (2000).

Lui, H.

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

Maarek, J. M.

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

MacAulay, C.

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

Majumdar, S. K.

Majumder, S. K.

Mang, T. S.

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Manoharan, R.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

McKhann, G. M.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

Mclean, D.

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

Meyer, R. A.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

Mittal, D. K.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Moan, J.

J. Moan, “Photoproducts formed from photofrin II in cells,” J. Photochem. Photobiol. 1, 429–436 (1988).
[CrossRef]

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

J. Moan, “Effect of bleaching of porphyrin sensitizers during photodynamic therapy,” Cancer Lett. 33, 45–53 (1986).
[CrossRef] [PubMed]

Mohanty, S. K.

Motamedi, M.

Muraca, E. S.

R. R. Kortum, E. S. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Nair, M. S.

M. S. Nair, N. Ghosh, N. Sundar Raju, A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41, 4024–4035 (2002).
[CrossRef] [PubMed]

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Opher, E.

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

Palcic, B.

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

Panda, R. N.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Papaiannou, T.

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

Patterson, M. S.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

Perelman, L. T.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Pergadia, V.

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

Polikarpov, V. S.

A. A. Stratonnikov, V. S. Polikarpov, V. B. Loschenov, “Photobleaching of endogenous fluorochromes in tissues in vivo during laser irradiation,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 13–24 (2000).

Potter, W. R.

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Pradhan, A.

M. S. Nair, N. Ghosh, N. Sundar Raju, A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41, 4024–4035 (2002).
[CrossRef] [PubMed]

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Rastegar, S.

Rastogi, A.

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Ratliff, N. B.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Rotomskis, R.

R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
[CrossRef]

G. Streckyte, R. Rotomskis, “Phototransformations of porphyrins in aqueous and micellar media,” J. Photochem. Photobiol. B 18, 259–263 (1993).
[CrossRef] [PubMed]

S. Feld, M.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Sacks, B. A.

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Scalettar, B. A.

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

Schlessinger, J.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Schmidth, J. A.

J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
[CrossRef]

Selvin, P. R.

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

Seow, F. C.

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

Sommer, S.

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Star, W. M.

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1996), pp. 131–206.

Stratonnikov, A. A.

A. A. Stratonnikov, V. S. Polikarpov, V. B. Loschenov, “Photobleaching of endogenous fluorochromes in tissues in vivo during laser irradiation,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 13–24 (2000).

Streckyte, G.

R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
[CrossRef]

G. Streckyte, R. Rotomskis, “Phototransformations of porphyrins in aqueous and micellar media,” J. Photochem. Photobiol. B 18, 259–263 (1993).
[CrossRef] [PubMed]

Sundar Raju, N.

Swain, S.

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Tang, G. C.

R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989).
[CrossRef]

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

Vari, S.

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

Wahl, S. J.

Webb, W. W.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

Welch, A. J.

Wilson, B. C.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

Yang, Y.

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

Yugerabide, E. E.

J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
[CrossRef]

Yugerabide, J.

J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
[CrossRef]

Zaruba, M. E.

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

Zeng, H.

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

Zhang, W.

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

Zonios, G.

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Zurawska, M. S.

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

Annu. Rev. Phys. Chem. (1)

R. R. Kortum, E. S. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef]

Appl. Opt. (5)

Biophys. J. (3)

J. Yugerabide, J. A. Schmidth, E. E. Yugerabide, “Lateral mobility in membranes as detected by fluorescence after photobleaching,” Biophys. J. 39, 69–75 (1982).
[CrossRef]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, W. W. Webb, “Mobility measurements by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1068 (1976).
[CrossRef] [PubMed]

B. A. Scalettar, P. R. Selvin, D. Axelrod, J. E. Hearst, M. P. Kelin, “A fluorescence photobleaching study of the microsecond reorientational motion of DNA,” Biophys. J. 53, 215–226 (1988).
[CrossRef] [PubMed]

Cancer Lett. (1)

J. Moan, “Effect of bleaching of porphyrin sensitizers during photodynamic therapy,” Cancer Lett. 33, 45–53 (1986).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. R. Alfano, A. Pradhan, G. C. Tang, D. S. J. Choy, E. Opher, “Fluorescence spectra from malignant and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987).
[CrossRef]

J. Histochem. Cytochem. (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, G. M. McKhann, “Cellular autofluorescence—Is it due to flavins?” J. Histochem. Cytochem. 27, 44–48 (1979).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. (1)

J. Moan, “Photoproducts formed from photofrin II in cells,” J. Photochem. Photobiol. 1, 429–436 (1988).
[CrossRef]

J. Photochem. Photobiol. B (1)

G. Streckyte, R. Rotomskis, “Phototransformations of porphyrins in aqueous and micellar media,” J. Photochem. Photobiol. B 18, 259–263 (1993).
[CrossRef] [PubMed]

Lasers Life Sci. (2)

B. V. Laxmi, R. N. Panda, M. S. Nair, A. Rastogi, D. K. Mittal, A. Agarwal, A. Pradhan, “Distinguishing normal, benign and malignant human breast tissues by visible polarized fluorescence,” Lasers Life Sci. 9, 229–243 (2001).

Y. Yang, E. J. Celmer, M. S. Zurawska, R. R. Alfano, “Excitation spectrum of malignant and benign breast tissues: a potential optical biopsy approach,” Lasers Life Sci. 7, 249–265 (1997).

Lasers Med. Sci. (1)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. 1. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1991).
[CrossRef]

Lasers Surg. Med. (1)

C. C. Hoyt, R. R. Richards-Kortum, B. Costello, B. A. Sacks, C. Kittrel, N. B. Ratliff, J. R. Kramer, M. S. Feld, “Remote biomedical spectroscopic imaging of human artery wall,” Lasers Surg. Med. 8, 1–9 (1988).
[CrossRef] [PubMed]

Photochem. Photobiol. (2)

H. Zeng, C. MacAulay, D. Mclean, B. Palcic, H. Lui, “The dynamics of laser induced autofluorescence decay in human skin—experimental measurements and theoretical modeling,” Photochem. Photobiol. 68, 227–236 (1998).
[CrossRef] [PubMed]

T. S. Mang, T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan, “Photobleaching of porphyrins used in photodynamic therapy and implications for therapy,” Photochem. Photobiol. 45, 501–506 (1987).
[CrossRef] [PubMed]

Photochem. Photobiol. B (1)

R. Rotomskis, S. Bagdonas, G. Streckyte, “Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumor therapy,” Photochem. Photobiol. B 33, 61–67 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, G. Zonios, R. Manoharan, C. Lima, T. Hamano, I. Itzkan, M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Other (8)

S. L. Jacques, R. Joseph, G. Gofstein, “How photobleaching affects dosimetry and fluorescence monitoring of PDT in turbid media,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy II, T. J. Dougherty, ed., Proc. SPIE1881, 168–169 (1993).
[CrossRef]

G. Carrero, “Diffusion process monitored by fluorescence recovery after photobleaching: some theoretical aspects,” presented at the meeting of the Canadian Applied and Industrial Mathematics Society, Victoria, B.C., Canada, 7–9 June 2001.

W. M. Star, “Diffusion theory of light transport,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1996), pp. 131–206.

E. P. Browne, T. A. Hatton, “A fluorescence recovery after photobleaching (FRAP) technique for the measurement of solute transport across surfactant-laden interfaces,” presented at the 3rd Microgravity Fluid Physics Conference, Cleveland, Ohio, 13 June 1996.

A. A. Stratonnikov, V. S. Polikarpov, V. B. Loschenov, “Photobleaching of endogenous fluorochromes in tissues in vivo during laser irradiation,” in Optical Technologies in Biophysics and Medicine II, V. V. Tuchin, ed., Proc. SPIE4241, 13–24 (2000).

T. C. Chia, Z. Huang, W. Zhang, C. H. Diong, F. C. Seow, “Changes in autofluorescence emission intensities of human colonic tissues due to photobleaching process,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 11–18 (1998).
[CrossRef]

T. Papaiannou, S. Vari, V. Pergadia, W. S. Grundfest, J. M. Maarek, “Photobleaching of native and endogenous (BPD-MA) fluorescence: an in vivo tumor-bearing rat model,” in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy V, T. J. Dougherty, ed., Proc. SPIE2675, 138–146 (1996).

S. Gupta, B. Bhawna, A. Pradhan, S. Swain, A. Agarwal, “Fluorescence photobleaching and recovery of human breast tissues and tissue phantoms,” in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE4613, 41–47 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Block diagram of the experimental setup for photobleaching experiments: PMT, photomultiplier tube.

Fig. 2
Fig. 2

Photobleaching decay profiles of 20-μM FAD and FAD with porphyrin (POR) monitored at λem = 530 nm with 12-mW laser irradiation.

Fig. 3
Fig. 3

Photobleaching decay profiles of 20-μM FAD (filled triangles), 20-μM FAD with a scatterer [μs = 1.07 mm-1 at 488 nm and μs = 0.971 mm-1 at 530 nm (stars); μs = 1.485 mm-1 at 488 nm and μs = 1.34 mm-1 at 530 nm (open triangles), and 20-μM FAD with an absorber [20 μM of Methylene Blue, μa = 0.0151 mm-1 at 488 nm and μa = 0.0215 mm-1 at 530 nm (squares)], monitored at λem = 530 nm with 12-mW laser irradiation.

Fig. 4
Fig. 4

Comparison of recovery profiles of 20-μM FAD (filled squares), 20-μM FAD with an absorber [20 μM of Methylene Blue, μa = 0.0151 mm-1 at 488 nm and μa = 0.0215 mm-1 at 530 nm (Abs.) and 20-μM FAD with a scatterer, μs = 1.07 mm-1 at 488 nm and μs = 0.971 mm-1 at 530 nm (Scatt.)], monitored at λem = 530 nm with 1.2-mW laser irradiation.

Fig. 5
Fig. 5

Recovery profiles of 20- and 80-μM FAD monitored at λem = 530 nm with 1.2-mW laser irradiation.

Fig. 6
Fig. 6

Comparison of relative concentration profiles of 20-μM FAD 20-μM FAD with a scatterer [μs = 1.07 mm-1 at 488 nm and μs = 0.971 mm-1 at 530 nm (Scatt.)], and 20-μM FAD with an absorber [20 μM of Methylene Blue, μa = 0.0151 mm-1 at 488 nm and μa = 0.0215 mm-1 at 530 nm) (Absorber)].

Fig. 7
Fig. 7

Comparison of relative concentration profiles for recovery in 20- and 80-μM FAD.

Fig. 8
Fig. 8

Comparison of photobleaching decay profiles of normal and cancerous human breast tissue monitored at λem = 530 nm with 20-mW laser irradiation.

Fig. 9
Fig. 9

Power dependence of photobleaching in tissue samples with low incident power and with high incident power.

Fig. 10
Fig. 10

Comparison of relative concentration profiles of normal and cancerous human breast tissue corresponding to the photobleached profiles of Fig. 8.

Fig. 11
Fig. 11

Comparison of fluorescence recovery profiles of normal and cancerous human breast tissue monitored at λem = 530 nm with 2-mW laser irradiation.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Pz=P0exp-z/δx,
Gz=G0 exp-z/δm,
I=0 PzσqCt, zGzdz=P0σqG00 Ct, zexp-z/δxexp-z/δmdz,
dCdt=-kCR,
R=R0+k1C,
dCdt=-Cτ1-C2τ2C0.
CtC0=exp-t/τ11+τ1/τ21-exp-t/τ1.
dCdt=-kCRexp-zδx,
Ct, zC0=exp-t/τ1exp-z/δx1+τ1/τ21-exp-t/τ1exp-z/δx.
I=K 0 Ct exp-zδxexp-zδx1+δxδmdz.
I=K 01 Ctppδx/δmδxdp.
I=Kδxtα+10t Cuuαdu.
dIdt=-α+1t It+Kδxt Ct.
Ct=t dIdt+α+1ItKδx.
It=I0±A exp-t-t0/τ,  A>0.
Ct=I0α+1±Aα+1-t/τexp-t-t0/τ/Kδx,

Metrics