Abstract

We discuss the maximum theoretical resolution of a single interface, electro-optically controllable beam deflector in domain-engineered LiNbO3 and report on experimental results for implementation of devices optimized either for maximum resolution or for maximum deflection angle. For the resolution optimized device we observed ∼50 resolvable spots for a ±1250-V range, which to our knowledge is a report of one of the highest ratios of resolution per volt from a solid-state electro-optic beam deflector.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
    [CrossRef]
  2. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
    [CrossRef]
  3. A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
    [CrossRef]
  4. Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
    [CrossRef]
  5. Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,” J. Lightwave Technol. 17, 462–465 (1999).
    [CrossRef]
  6. K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001).
    [CrossRef]
  7. D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. X. Jia, T. E. Mitchell, J. M. Robinson, “Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning,” Appl. Opt. 40, 6236–6241 (2001).
    [CrossRef]
  8. D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
    [CrossRef]
  9. J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
    [CrossRef]
  10. C. J. G. Kirkby, C. Florea, “Electro-optic coefficients of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 136–137.
  11. C. J. G. Kirkby, C. Florea, “Dispersion properties of LiNbO3 and tables,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 122–123.
  12. S. J. Barrington, A. J. Boyland, R. W. Eason, “Domain engineered lithium niobate as a medium for an integrated solid-state 2D color laser scanning system,” submitted to Appl. Opt.

2002 (2)

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

2001 (5)

K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001).
[CrossRef]

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. X. Jia, T. E. Mitchell, J. M. Robinson, “Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning,” Appl. Opt. 40, 6236–6241 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

1999 (1)

1995 (1)

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Abernethy, J. A.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

Barad, Y.

Barrington, S. J.

S. J. Barrington, A. J. Boyland, R. W. Eason, “Domain engineered lithium niobate as a medium for an integrated solid-state 2D color laser scanning system,” submitted to Appl. Opt.

Boyland, A. J.

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

S. J. Barrington, A. J. Boyland, R. W. Eason, “Domain engineered lithium niobate as a medium for an integrated solid-state 2D color laser scanning system,” submitted to Appl. Opt.

Burton, R. S.

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Casson, J. L.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

K. T. Gahagan, D. A. Scrymgeour, J. L. Casson, V. Gopalan, J. M. Robinson, “Integrated high-power electro-optic lens and large-angle deflector,” Appl. Opt. 40, 5638–5642 (2001).
[CrossRef]

Chandramani, P.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

Chiu, Y.

Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,” J. Lightwave Technol. 17, 462–465 (1999).
[CrossRef]

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Eason, R. W.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

S. J. Barrington, A. J. Boyland, R. W. Eason, “Domain engineered lithium niobate as a medium for an integrated solid-state 2D color laser scanning system,” submitted to Appl. Opt.

Florea, C.

C. J. G. Kirkby, C. Florea, “Dispersion properties of LiNbO3 and tables,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 122–123.

C. J. G. Kirkby, C. Florea, “Electro-optic coefficients of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 136–137.

Gahagan, K. T.

Gawith, C. B. E.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

Gopalan, V.

Hendricks, J. M.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Jia, Q. X.

Kawas, M. J.

Kiamilev, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

Kirkby, C. J. G.

C. J. G. Kirkby, C. Florea, “Dispersion properties of LiNbO3 and tables,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 122–123.

C. J. G. Kirkby, C. Florea, “Electro-optic coefficients of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 136–137.

Mailis, S.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

Mitchell, T. E.

Muhammad, F.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

Robinson, J. M.

Ross, G. W.

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

Sander, R.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

Schlesinger, T. E.

Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,” J. Lightwave Technol. 17, 462–465 (1999).
[CrossRef]

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Scrymgeour, D. A.

Sharan, A.

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

Smith, P. G. R.

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Stancil, D. D.

Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,” J. Lightwave Technol. 17, 462–465 (1999).
[CrossRef]

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. A. Scrymgeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, F. Kiamilev, “Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,” Appl. Phys. Lett. 81, 3140–3142 (2002).
[CrossRef]

J. A. Abernethy, C. B. E. Gawith, R. W. Eason, P. G. R. Smith, “Demonstration and optical characteristics of electro-optic bragg modulators in periodically poled lithium niobate in the near-infrared,” Appl. Phys. Lett. 81, 2514–2516 (2002).
[CrossRef]

Electron. Lett. (1)

A. J. Boyland, G. W. Ross, S. Mailis, P. G. R. Smith, R. W. Eason, “Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3,” Electron. Lett. 37, 585–587 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Y. Chiu, R. S. Burton, D. D. Stancil, T. E. Schlesinger, “Design and simulation of wave-guide electrooptic beam deflectors,” J. Lightwave Technol. 13, 2049–2052 (1995).
[CrossRef]

Y. Chiu, V. Gopalan, M. J. Kawas, T. E. Schlesinger, D. D. Stancil, “Integrated optical device with second-harmonic generator, electrooptic lens, and electrooptic scanner in LiTaO3,” J. Lightwave Technol. 17, 462–465 (1999).
[CrossRef]

Opt. Commun. (2)

R. W. Eason, A. J. Boyland, S. Mailis, P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 201–207 (2001).
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197, 193–200 (2001).
[CrossRef]

Other (3)

C. J. G. Kirkby, C. Florea, “Electro-optic coefficients of LiNbO3,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 136–137.

C. J. G. Kirkby, C. Florea, “Dispersion properties of LiNbO3 and tables,” in Properties of Lithium Niobate, K. K. Wong, ed., Vol. 28 of EMIS Datareviews (IEE Publishing, London, 2002), pp. 122–123.

S. J. Barrington, A. J. Boyland, R. W. Eason, “Domain engineered lithium niobate as a medium for an integrated solid-state 2D color laser scanning system,” submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of two methods of enhancing the angular deflection of electro-optic solid-state deflectors. Shaded areas indicated a domain-reversed region opposite the unshaded areas.

Fig. 2
Fig. 2

Beam deflection from a single interface.

Fig. 3
Fig. 3

Deflectable beam incident upon an air interface.

Fig. 4
Fig. 4

Calculated maximum resolution of the deflector. (The dimensions and values used are coincident with those used in experimental results described below; w.r.t., with regard to).

Fig. 5
Fig. 5

Image showing the beam profile with deflection away from interface normal. Results here are optimized for total reflection range, not resolution. Beam profile images are scaled with the x axis.

Fig. 6
Fig. 6

Transmitted intensity as a function of applied voltage for the faceted deflector.

Fig. 7
Fig. 7

Image showing the beam profile with deflection away from interface normal. Beam profile images are scaled with the x axis. Results here have been optimized for maximum resolution at small angular deflections.

Fig. 8
Fig. 8

Image showing the beam profile with deflection toward interface normal. Beam profile images are scaled with the x axis.

Fig. 9
Fig. 9

Temperature dependence of resolution at three wavelengths that correspond roughly to red, green, and blue light (bottom to top).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

sin θ2=ne+Δnne-Δnsin θ1,
N=θmax/θdiv,
N=0θmaxdθ1θdivθ1.
dθ2dθ1=necos θ1cos θ2;
w1cos θ1=w2cos θ2;
θdiv2=θdiv1necos θ1cos θ2;
N=0θmaxdθ2θdiv2θ1.
θdiv=λ cos θ1w1πne cos θ2.
sin θ2=1+Er33ne2sin θ1,
dθ2=sin θ1cos θ2ne2r33dE.
N=EminEmaxdθ2EθdivE,
N=tan θ1ne3r33w1πλ ΔE,
 L=2w1cos θ1.
N=sin θ1ne3r33Lπ2λ ΔE.
sin θ1=11+Er33ne2,
N=neLπλ1-sin θ1,
N=neLπλ1-11+Emaxne2r33,
Nne3Lπλ Emaxr33,

Metrics