Abstract

Two configurations of volume holographic grating couplers are rigorously analyzed by means of the finite-difference frequency-domain method (FDFD) for both TE and TM polarizations and for 0- and 45-deg output coupling. The two configurations depend on the position of the grating coupler, which can be placed either in the film or in the cover waveguide region. The FDFD results are compared with those obtained by the rigorous coupled-wave analysis in conjunction with the leaky-mode approach (RCWA–LM). Because the FDFD method is a rigorous solution of the Maxwell equations, it simulates the VHGC configuration and takes into account the waveguide-coupler discontinuity effects as well as the multimode excitation and interference effects, all of which are neglected by the traditional RCWA–LM.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription