Abstract

We present a method for fabricating an in-fiber electro-optic polymer waveguide within a D-shaped optical fiber. A combined process of selective chemical etching and spin coating creates a 2-cm in-fiber poly(methyl methacrylate)-DR1 dye polymer waveguide section with an overall insertion loss of ∼1.6 dB at 1550 nm. Numerical simulations show that, for in-fiber polymer waveguides to have low loss, the polymer layer’s thickness must be kept below a certain value so that it will not support slab waveguide modes. Long transition regions between the unetched fiber and the polymer waveguide section also reduce loss. We analyze the efficiency of an in-fiber polymer waveguide by simulating its theoretical performance as an electro-optic modulator.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
    [CrossRef]
  2. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  3. G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
    [CrossRef]
  4. S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
    [CrossRef]
  5. J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
    [CrossRef]
  6. W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
    [CrossRef]
  7. R. Vallee, G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
    [CrossRef]
  8. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23, 1826–1828 (1998).
    [CrossRef]
  9. S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
    [CrossRef]
  10. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, G. Miller, “Controlled core removal from a D-shaped optical fiber,” Appl. Opt. 42, 7121–7125 (2003).
    [CrossRef]
  11. RSoft, Inc., BeamPROP™ user’s guide (RSoft, Ossining, N.Y., 2001).
  12. S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph.D. dissertation (University of Southern California, Los Angeles, California, 1998).
  13. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).
  14. M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, Ill., 1996).

2003 (1)

1998 (1)

1997 (1)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

1996 (2)

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

1993 (1)

R. Vallee, G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

1992 (2)

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

1988 (1)

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

1987 (1)

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

Andonovic, I.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Bone, D. J.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Canfield, B. K.

Carter, N.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Creany, S.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Dyott, R. B.

Fawcett, G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Garner, S.

S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph.D. dissertation (University of Southern California, Los Angeles, California, 1998).

Garvey, D. W.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Harvey, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

He, G.

R. Vallee, G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Ipson, B. L.

Jauncey, I.

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

Johnstone, W.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Kuzyk, M. G.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Liu, M.

M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, Ill., 1996).

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Mallinson, S. R.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Markos, D. J.

McCallion, K.

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

Mears, R.

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Millar, C. A.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Miller, G.

Mononobe, S.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Monte, T. D.

Moodie, D.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Ohtsu, M.

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Payne, D.

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

Reekie, L.

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

Ryan, T. G.

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Smith, K. H.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

Thursby, G.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Tostenrude, J.

Vallee, R.

R. Vallee, G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

Varshney, R.

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

Welker, D. J.

Wright, J. V.

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

R. Mears, L. Reekie, I. Jauncey, D. Payne, “Low noise erbium-doped fiber amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
[CrossRef]

G. Fawcett, W. Johnstone, I. Andonovic, D. J. Bone, T. G. Harvey, N. Carter, T. G. Ryan, “In-line fibre-optic intensity modulator using electro-optic polymer,” Electron. Lett. 28, 985–986 (1992).
[CrossRef]

W. Johnstone, G. Thursby, D. Moodie, R. Varshney, B. Culshaw, “Fibre-optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364–1365 (1992).
[CrossRef]

IEE Proc. J (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J 138, 343–354 (1991).

IEEE J. Lightwave Technol. (1)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

J. V. Wright, S. R. Mallinson, C. A. Millar, “A fiber-based crosspoint switch using high-refractive index interlay materials,” IEEE J. Sel. Areas Commun. 6, 1160–1168 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Creany, W. Johnstone, K. McCallion, “Continuous-fiber modulator with high-bandwidth coplanar strip electrodes,” IEEE Photon. Technol. Lett. 8, 355–357 (1996).
[CrossRef]

J. Lightwave Technol. (2)

R. Vallee, G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol. 11, 1196–1203 (1993).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[CrossRef]

Opt. Lett. (1)

Other (3)

M. Liu, Principles and Applications of Optical Communications (Irwin, Chicago, Ill., 1996).

RSoft, Inc., BeamPROP™ user’s guide (RSoft, Ossining, N.Y., 2001).

S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph.D. dissertation (University of Southern California, Los Angeles, California, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Elliptical germania-doped D-fiber core surrounded by a lower-index fluorine-doped cladding region.

Fig. 2
Fig. 2

SEM image of a typical etch profile. The cladding has been etched only slightly, whereas approximately half of the core has been removed.

Fig. 3
Fig. 3

Cross-sectional SEM images of polymer waveguides for the fabrication parameters given in Table 1. The white curves were added to show the interface between the glass and the polymer.

Fig. 4
Fig. 4

Contour lines specifying the electric field calculated with BeamPROP and an illustration of the refractive-index profile.

Fig. 5
Fig. 5

Cross sections of the two polymer waveguides that were analyzed.

Fig. 6
Fig. 6

Top view of the three-dimensional field calculation for thin and thick polymer layers.

Fig. 7
Fig. 7

Slab mode cutoff thickness versus polymer index.

Fig. 8
Fig. 8

In-fiber polarimetric modulator.

Fig. 9
Fig. 9

Refractive-index profile used to model the device efficiency.

Fig. 10
Fig. 10

Modulator length for a phase shift between polarizations as a function of polymer thickness and index.

Tables (1)

Tables Icon

Table 1 Representative Fabrication and Loss Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T=PoutPin=sin2πλ LΔB,
ΔB=NTE,V-NTM,V-NTE,0-NTM,0,
Lπ=λ/2ΔB.
Δnp,TE=½npo3r33E,
Δnp,TM=½npo3r13E,

Metrics