Abstract

The effects of the nonlinear behavior of fluorescent intensity with excitation intensity on emission reabsorption laser-induced fluorescence (ERLIF) are investigated. Excitation nonlinearities arise mainly as a consequence of the depletion of the ground-state population stemming from the finite lifetime of molecules in the excited state. These nonlinearities hinder proper suppression of the excitation intensity information in the fluorescence ratio, degrading measurement accuracy. A method for minimizing this effect is presented. This method is based on the approximation of the fluorescence intensity nonlinearities by a power law. Elevating the two-dimensional fluorescent intensity maps to the appropriate exponent allows for proper suppression of excitation intensity in the fluorescence ratio. An overview of the principles and constitutive equations behind ERLIF film-thickness measurements, along with a characterization of the fluorescence’s nonlinear behavior, is presented. The power law approximation and processing scheme used to mitigate this behavior are introduced. Experimental proof of the validity of the approximation and processing scheme is provided.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
    [CrossRef]
  2. A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
    [CrossRef]
  3. N. Georgiev, M. Alden, “Two-dimensional imaging of flame species using two-photon laser-induced fluorescence,” Appl. Spectrosc. 51, 1229–1237 (1997).
    [CrossRef]
  4. A. Kovacs, “Visualization of fuel-lubricant on the cylinder surface in the combustion chamber of SI engines,” Lubr. Sci. 7, 149–162 (1995).
    [CrossRef]
  5. B. Thirouard, D. P. Hart, “Investigation of oil transport mechanisms in the piston ring pack of a single-cylinder diesel engine, using two-dimensional laser induced fluorescence,” J. Fuels Lubr. 107, 2007–2015 (1998).
  6. J. Coppeta, C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids 25, 1–15 (1998).
    [CrossRef]
  7. J. Sakakibara, R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
    [CrossRef]
  8. C. H. Hidrovo, D. P. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
    [CrossRef]
  9. V. I. Yushakov, K. G. Yevsyukhina, S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in ALT’97 International Conference on Laser Surface Processing, V. I. Pustovoy, ed., Proc. SPIE3404, 388–396 (1997).
    [CrossRef]
  10. S. Patsayeva, V. Yuzhakov, V. Varlamov, “Laser induced fluorescence saturation for binary mixtures of organic luminophores,” in ICONO ’98 Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, A. Y. Chikishev, V. N. Zadkov, A. M. Zheltikov, eds., Proc. SPIE3732, 147–156 (1999).
    [CrossRef]
  11. D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. Visualization 3, 187–194 (2000).
    [CrossRef]
  12. G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
    [CrossRef]
  13. S. Saeki, D. P. Hart, “Investigation on YAG (532) laser dyes for oil film thickness and temperature measurement,” in Proceedings of the 3rd Pacific Symposium on Flow Visualization and Image Processing, T. Kobayashi, ed. (T. Kobayashi, Tokyo, Japan, 2001), available on CD-ROM.
  14. G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
    [CrossRef]
  15. H. Dornauf, J. Heber, “Concentration-dependent fluorescence quenching in La1-xPrxP5O14,” J. Lumin. 22, 1–16 (1980).
    [CrossRef]
  16. A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
    [CrossRef]
  17. R. Y. Tsien, A. Waggoner, “Fluorophores for confocal microscopy: photophysics and photochemistry,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 267–279.
    [CrossRef]
  18. T. Hirschfeld, “Quantum efficiency independence of the time integrated emission from a fluorescent molecule,” Appl. Opt. 15, 3135–3139 (1976).
    [CrossRef] [PubMed]
  19. C. H. Hidrovo, “Development of a fluorescence based optical diagnostics technique and investigation of particle ingestion and accumulation in the contact region of rotating shaft seals,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001).

2001 (1)

C. H. Hidrovo, D. P. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

2000 (1)

D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. Visualization 3, 187–194 (2000).
[CrossRef]

1999 (1)

J. Sakakibara, R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

1998 (3)

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

B. Thirouard, D. P. Hart, “Investigation of oil transport mechanisms in the piston ring pack of a single-cylinder diesel engine, using two-dimensional laser induced fluorescence,” J. Fuels Lubr. 107, 2007–2015 (1998).

J. Coppeta, C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids 25, 1–15 (1998).
[CrossRef]

1997 (1)

1995 (1)

A. Kovacs, “Visualization of fuel-lubricant on the cylinder surface in the combustion chamber of SI engines,” Lubr. Sci. 7, 149–162 (1995).
[CrossRef]

1982 (1)

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

1980 (1)

H. Dornauf, J. Heber, “Concentration-dependent fluorescence quenching in La1-xPrxP5O14,” J. Lumin. 22, 1–16 (1980).
[CrossRef]

1977 (1)

A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
[CrossRef]

1976 (1)

Adrian, R. J.

J. Sakakibara, R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

Alden, M.

Ayala, H.

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

Boyce, M. C.

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

Buryi, A. N.

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

Coppeta, J.

J. Coppeta, C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids 25, 1–15 (1998).
[CrossRef]

Denisov, N. A.

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

Dets, S. M.

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

Dornauf, H.

H. Dornauf, J. Heber, “Concentration-dependent fluorescence quenching in La1-xPrxP5O14,” J. Lumin. 22, 1–16 (1980).
[CrossRef]

Georgiev, G.

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

Georgiev, N.

Hart, D. P.

C. H. Hidrovo, D. P. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. Visualization 3, 187–194 (2000).
[CrossRef]

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

B. Thirouard, D. P. Hart, “Investigation of oil transport mechanisms in the piston ring pack of a single-cylinder diesel engine, using two-dimensional laser induced fluorescence,” J. Fuels Lubr. 107, 2007–2015 (1998).

S. Saeki, D. P. Hart, “Investigation on YAG (532) laser dyes for oil film thickness and temperature measurement,” in Proceedings of the 3rd Pacific Symposium on Flow Visualization and Image Processing, T. Kobayashi, ed. (T. Kobayashi, Tokyo, Japan, 2001), available on CD-ROM.

Heber, J.

H. Dornauf, J. Heber, “Concentration-dependent fluorescence quenching in La1-xPrxP5O14,” J. Lumin. 22, 1–16 (1980).
[CrossRef]

Hidrovo, C. H.

C. H. Hidrovo, D. P. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

C. H. Hidrovo, “Development of a fluorescence based optical diagnostics technique and investigation of particle ingestion and accumulation in the contact region of rotating shaft seals,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001).

Hirschfeld, T.

Huang, Z.

G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
[CrossRef]

Joffe, A. Y.

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

Jones, G.

G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
[CrossRef]

Kalkanjiev, T.

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

Kovacs, A.

A. Kovacs, “Visualization of fuel-lubricant on the cylinder surface in the combustion chamber of SI engines,” Lubr. Sci. 7, 149–162 (1995).
[CrossRef]

Kumar, S.

G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
[CrossRef]

Losev, A. P.

A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
[CrossRef]

Metchkov, D.

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

Nickolov, Zh.

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

Pacheco, D.

G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
[CrossRef]

Patsayeva, S.

S. Patsayeva, V. Yuzhakov, V. Varlamov, “Laser induced fluorescence saturation for binary mixtures of organic luminophores,” in ICONO ’98 Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, A. Y. Chikishev, V. N. Zadkov, A. M. Zheltikov, eds., Proc. SPIE3732, 147–156 (1999).
[CrossRef]

Patsayeva, S. V.

V. I. Yushakov, K. G. Yevsyukhina, S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in ALT’97 International Conference on Laser Surface Processing, V. I. Pustovoy, ed., Proc. SPIE3404, 388–396 (1997).
[CrossRef]

Rogers, C.

J. Coppeta, C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids 25, 1–15 (1998).
[CrossRef]

Saeki, S.

S. Saeki, D. P. Hart, “Investigation on YAG (532) laser dyes for oil film thickness and temperature measurement,” in Proceedings of the 3rd Pacific Symposium on Flow Visualization and Image Processing, T. Kobayashi, ed. (T. Kobayashi, Tokyo, Japan, 2001), available on CD-ROM.

Sagun, E. I.

A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
[CrossRef]

Sakakibara, J.

J. Sakakibara, R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

Sayenko, V. F.

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

Stamenov, K.

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

Thirouard, B.

B. Thirouard, D. P. Hart, “Investigation of oil transport mechanisms in the piston ring pack of a single-cylinder diesel engine, using two-dimensional laser induced fluorescence,” J. Fuels Lubr. 107, 2007–2015 (1998).

Tsien, R. Y.

R. Y. Tsien, A. Waggoner, “Fluorophores for confocal microscopy: photophysics and photochemistry,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 267–279.
[CrossRef]

Varlamov, V.

S. Patsayeva, V. Yuzhakov, V. Varlamov, “Laser induced fluorescence saturation for binary mixtures of organic luminophores,” in ICONO ’98 Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, A. Y. Chikishev, V. N. Zadkov, A. M. Zheltikov, eds., Proc. SPIE3732, 147–156 (1999).
[CrossRef]

Waggoner, A.

R. Y. Tsien, A. Waggoner, “Fluorophores for confocal microscopy: photophysics and photochemistry,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 267–279.
[CrossRef]

Yeh, O.

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

Yevsyukhina, K. G.

V. I. Yushakov, K. G. Yevsyukhina, S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in ALT’97 International Conference on Laser Surface Processing, V. I. Pustovoy, ed., Proc. SPIE3404, 388–396 (1997).
[CrossRef]

Yushakov, V. I.

V. I. Yushakov, K. G. Yevsyukhina, S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in ALT’97 International Conference on Laser Surface Processing, V. I. Pustovoy, ed., Proc. SPIE3404, 388–396 (1997).
[CrossRef]

Yuzhakov, V.

S. Patsayeva, V. Yuzhakov, V. Varlamov, “Laser induced fluorescence saturation for binary mixtures of organic luminophores,” in ICONO ’98 Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, A. Y. Chikishev, V. N. Zadkov, A. M. Zheltikov, eds., Proc. SPIE3732, 147–156 (1999).
[CrossRef]

Zen’kevich, É. I.

A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Exp. Fluids (2)

J. Coppeta, C. Rogers, “Dual emission laser induced fluorescence for direct planar scalar behavior measurements,” Exp. Fluids 25, 1–15 (1998).
[CrossRef]

J. Sakakibara, R. J. Adrian, “Whole field measurement of temperature in water using two-color laser induced fluorescence,” Exp. Fluids 26, 7–15 (1999).
[CrossRef]

J. Appl. Spectrosc. (1)

A. P. Losev, É. I. Zen’kevich, E. I. Sagun, “Concentration quenching of fluorescence and triplet formation of chlorophyll a and pheophytin in solutions,” J. Appl. Spectrosc. 27, 996–998 (1977).
[CrossRef]

J. Fuels Lubr. (1)

B. Thirouard, D. P. Hart, “Investigation of oil transport mechanisms in the piston ring pack of a single-cylinder diesel engine, using two-dimensional laser induced fluorescence,” J. Fuels Lubr. 107, 2007–2015 (1998).

J. Lumin. (2)

G. Georgiev, T. Kalkanjiev, D. Metchkov, Zh. Nickolov, K. Stamenov, “Influence of the shape of the exciting laser pulse on fluorescence saturation in the quantitative analysis of dissolved trace organic substances,” J. Lumin. 27, 89–99 (1982).
[CrossRef]

H. Dornauf, J. Heber, “Concentration-dependent fluorescence quenching in La1-xPrxP5O14,” J. Lumin. 22, 1–16 (1980).
[CrossRef]

J. Visualization (1)

D. P. Hart, “Super-resolution PIV by recursive local-correlation,” J. Visualization 3, 187–194 (2000).
[CrossRef]

Lubr. Sci. (1)

A. Kovacs, “Visualization of fuel-lubricant on the cylinder surface in the combustion chamber of SI engines,” Lubr. Sci. 7, 149–162 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

C. H. Hidrovo, D. P. Hart, “Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement,” Meas. Sci. Technol. 12, 467–477 (2001).
[CrossRef]

Wear (1)

H. Ayala, D. P. Hart, O. Yeh, M. C. Boyce, “Wear of oil containment elastomer in abrasive slurries,” Wear 220, 9–21 (1998).
[CrossRef]

Other (7)

A. Y. Joffe, V. F. Sayenko, N. A. Denisov, S. M. Dets, A. N. Buryi, “Early diagnosis of gastric cancer with laser induced fluorescence,” in Optical and Imaging Techniques for Biomonitoring IV, M. Dal Fante, H.-J. Foth, N. Krasner, R. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 10–17 (1999).
[CrossRef]

V. I. Yushakov, K. G. Yevsyukhina, S. V. Patsayeva, “Laser induced saturation of fluorescence for complex organic molecules,” in ALT’97 International Conference on Laser Surface Processing, V. I. Pustovoy, ed., Proc. SPIE3404, 388–396 (1997).
[CrossRef]

S. Patsayeva, V. Yuzhakov, V. Varlamov, “Laser induced fluorescence saturation for binary mixtures of organic luminophores,” in ICONO ’98 Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, A. Y. Chikishev, V. N. Zadkov, A. M. Zheltikov, eds., Proc. SPIE3732, 147–156 (1999).
[CrossRef]

S. Saeki, D. P. Hart, “Investigation on YAG (532) laser dyes for oil film thickness and temperature measurement,” in Proceedings of the 3rd Pacific Symposium on Flow Visualization and Image Processing, T. Kobayashi, ed. (T. Kobayashi, Tokyo, Japan, 2001), available on CD-ROM.

G. Jones, Z. Huang, S. Kumar, D. Pacheco, “Fluorescence and lasing properties of benzo-fused pyrromethene dyes in poly(methyl methacrylate) solid host media,” in Solid State Lasers XI, R. Scheps, ed., Proc. SPIE4630, 65–74 (2002).
[CrossRef]

R. Y. Tsien, A. Waggoner, “Fluorophores for confocal microscopy: photophysics and photochemistry,” in Handbook of Biological Confocal Microscopy, 2nd ed., J. B. Pawley, ed. (Plenum, New York, 1995), pp. 267–279.
[CrossRef]

C. H. Hidrovo, “Development of a fluorescence based optical diagnostics technique and investigation of particle ingestion and accumulation in the contact region of rotating shaft seals,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Example of ERLIF.

Fig. 2
Fig. 2

Fixture and setup used for calibrating film thickness.

Fig. 3
Fig. 3

Comparison of the film thickness laser-induced fluorescence signal for Pyrromethene 567 (Pyr 567) and Pyrromethene 650 (Pyr 650) versus their ratio (optically thick system with strong reabsorption).

Fig. 4
Fig. 4

Fluorescence signal as a function of excitation photon flux and its decomposition into various nonlinear terms.

Fig. 5
Fig. 5

Reduction of the excitation photon flux as a function of thickness owing to absorption (optically thick system).

Fig. 6
Fig. 6

(a)–(c) Fluorescence signals as a function of excitation photon flux and film thickness for three different dye molar concentrations C; (d) comparison of behavior of the signal as a function of ρ o for the three concentrations (t = 100 μm).

Fig. 7
Fig. 7

Beam wander and distortion caused by aberrations in ND filters.

Fig. 8
Fig. 8

Thin and thick film regions over which fluorescence signal measurements were taken and averaged.

Fig. 9
Fig. 9

Responses of imaging systems and characterization of ND filters.

Fig. 10
Fig. 10

Emission (Em.) and absorption (Abs.) spectra for Pyrromethene 605 (P605) and Pyrromethene 650 (P650).

Fig. 11
Fig. 11

Results of tests for camera 1 (580 nm), Region 1 (thin film thickness): (a) single P605, (b) single P605 normalized, (c) single P650, (d) single P650 normalized, (e) mixed P605/P650, (f) mixed P605/P650 normalized.

Fig. 12
Fig. 12

Results of tests for camera 1 (580 nm), Region 2 (thick film thickness): (a) single P605, (b) single P605 normalized, (c) single P650, (d) single P650 normalized, (e) mixed P605/P650, (f) mixed P605/P650 normalized.

Fig. 13
Fig. 13

Results of tests for camera 2 (620 nm), Region 1 (thin film thickness): (a) single P605, (b) single P605 normalized, (c) single P650, (d) single P650 normalized, (e) mixed P605/P650, (f) mixed P605/P650 normalized.

Fig. 14
Fig. 14

Results of tests for camera 2 (620 nm), Region 2 (thick film thickness): (a) single P605, (b) single P605 normalized, (c) single P650, (d) single P650 normalized, (e) mixed P605/P650, (f) mixed P605/P650 normalized.

Fig. 15
Fig. 15

Fluorescence and ERLIF ratio images for thin-film thickness.

Fig. 16
Fig. 16

Comparison of actual and approximate (power law) fluorescence behavior with excitation intensity for several values of ρ o and γ.

Fig. 17
Fig. 17

Fluorescence signal as a function of excitation intensity and power law regression fitting for high concentration mixed-dye samples in Region 1 (thin film): (a) 580 nm (Camera 1) signal with power regression fit γ1 = 0.834 and (b) 620 nm (Camera 2) signal with power regression fit γ2 = 0.6512.

Fig. 18
Fig. 18

Ratio images for eight values of Γ.

Fig. 19
Fig. 19

Ratio images and thickness profiles for Γ values of 1.0 and 1.3.

Tables (1)

Tables Icon

Table 1 Dyes and Concentrations Employed in the Samples Tested

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

Eft=IoΦAfτp1-exp-ελlaserCt.
tc=1/εC.
Ef,1t, λfilter1, y, τ=Ioy, τε1λlaserC1Φ1λfilter1Afτp1-exp-ελlaserC+ε2λfilter1C2tελlaserC+ε2λfilter1C2,
Ef,2t, λfilter2, y, τ=Ioy, τε2λlaserC2Φ2λfilter2Afτp1-exp-ελlaserCtελlaserC,
tc,1=1ελlaserC+ε2λfilter1C2,
tc,2=1ελlaserC,
R=Ef,2Ef,1,
Rt, λfilter1, λfilter2=ε2λlaserC2Φ2λfilter2ελlaserC+ε2λfilter1C21-exp-ελlaserCtε1λlaserC1Φ1λfilter1ελlaserC1-exp-ελlaserC+ε2λfilter1C2t,
n2τ=nBρoBρo+A1-exp-Bρo+Aτ, 0ττp,
n2τ=nBρoBρo+AexpAτp-exp-Bρoτpexp-Aτ, τ>τp.
Ef=Af0τe Ifτdτ=νEM0τe n2τdτ.
Ef=νEMnBρoA21Bρo+Aτp Term 1-1Bρo+ATerm 2 +exp-Bρo+AτpBρo+ATerm 3+1ATerm 4 -exp-Bρo+AτpATerm 5.
lim Efρo0=νEMnBρoA21τpA,
lim Efρo=νEMnA21Aτp+1A,
ρc=A/B.
dEf=νEMdnBρeA21Bρe+Aτp-1Bρe+A+exp-Bρe+AτpBρe+A+1A-exp-Bρe+AτpA,
Ef=0tdEf,
dn=CAfNAdx
ρe=ρo exp-εCx=ρo exp-BNACx.
Ef,1=F1IeG1ε, C, t,
Ef,2=F2IeG2ε, C, t
R=Ef,2Ef,1=F2IeG2ε, C, tF1IeG1ε, C, t.
R=Ef,2Ef,1=G2ε, C, tG1ε, C, t
R=Ef,2Ef,1=F2IeG2ε, C, tF1IeG1ε, C, t=FRIeG2ε, C, tG1ε, C, t,
Ef  Ieγ,
Ef,1t, λfilter1, y, τ=Ioy, τγ1ε1λlaserC1Φ1λfilter1Afτp1-exp-γ1ελlaserC+ε2λfilter1C2tγ1ελlaserC+ε2λfilter1C2,
Ef,2t, λfilter2, y, τ=Ioy, τγ2ε2λlaserC2Φ2λfilter2Afτp1-exp-γ2ελlaserCtγ2ελlaserC.
Ef,1  Ioγ1,
Ef,2  Ioγ2,
Γ=γ1/γ2,
R=Ef,2Γ/Ef,1
Ef,2Γ  Ioγ2Γ=Ioγ2γ1/γ2=Ioγ1,
Ef,2t, λfilter1, y, τΓ=Ioy, τγ1ε2λlaserC2Φ2λfilter2AfτpΓ1-exp-γ2ελlaserCtΓγ2ελlaserCΓ,
R=Ef,2ΓEf,1,
Rt, λfilter1, λfilter2=AfτpΓ-1ε2λlaserC2Φ2λfilter2Γγ1ελlaserC+ε2λfilter1C21-exp-γ2ελlaserCtΓε1λlaserC1Φ1λfilter1γ2ελlaserCΓ1-exp-γ1ελlaserC+ε2λfilter1C2t,

Metrics