Abstract

The effects of the nonlinear behavior of fluorescent intensity with excitation intensity on emission reabsorption laser-induced fluorescence (ERLIF) are investigated. Excitation nonlinearities arise mainly as a consequence of the depletion of the ground-state population stemming from the finite lifetime of molecules in the excited state. These nonlinearities hinder proper suppression of the excitation intensity information in the fluorescence ratio, degrading measurement accuracy. A method for minimizing this effect is presented. This method is based on the approximation of the fluorescence intensity nonlinearities by a power law. Elevating the two-dimensional fluorescent intensity maps to the appropriate exponent allows for proper suppression of excitation intensity in the fluorescence ratio. An overview of the principles and constitutive equations behind ERLIF film-thickness measurements, along with a characterization of the fluorescence’s nonlinear behavior, is presented. The power law approximation and processing scheme used to mitigate this behavior are introduced. Experimental proof of the validity of the approximation and processing scheme is provided.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative two-dimensional measurement of oil-film thickness by laser-induced fluorescence in a piston-ring model experiment

Stefan Wigger, Hans-Jürgen Füßer, Daniel Fuhrmann, Christof Schulz, and Sebastian A. Kaiser
Appl. Opt. 55(2) 269-279 (2016)

Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten
Appl. Opt. 43(12) 2588-2597 (2004)

Semiconductor laser-induced fluorescence detection in picoliter volume flow cells

Anders P. Larson, Henrik Ahlberg, and Staffan Folestad
Appl. Opt. 32(6) 794-805 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription