Abstract

We design, fabricate, and characterize the micromachined refractive variable optical attenuator (VOA) with a wedge-shaped silicon optical leaker (SOL). The vertical structures of the VOA device can be simply fabricated by deep reactive ion etching with no sidewall metallization, and the 8° angled fibers are employed for a high return loss even in air-ambient conditions. The SOL successively transmits and refracts part of the incident light far outside the acceptance angle of the output fiber, showing an effective optical attenuation. The fabricated VOA gives high optical performances, such as a response time of 6 ms, a return loss of 39 dB, an insertion loss of 0.6 dB, an attenuation range of 43 dB, and a polarization-dependent loss (PDL) of a 10% attenuation level, including a wavelength-dependent loss. The optical characteristics of the VOA are also theoretically investigated with respect to the wedge angles of the SOL. The experimental characteristics are in good agreement with the theoretical values calculated, considering light scattered from the endface of an optical fiber and sidewall of the SOL. The PDL estimation was confirmed especially to sufficiently explain the fundamental characteristic of the PDL for the refractive VOA.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.
  2. J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
    [CrossRef]
  3. B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
    [CrossRef]
  4. R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.
  5. A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
    [CrossRef]
  6. C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
    [CrossRef]
  7. S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.
  8. W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
    [CrossRef]
  9. G. R. Fowles, Introduction to Modern Optics (Dover, New York, 1989), Chap. 2.
  10. W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996).
    [CrossRef]
  11. J. Bhardwaj, H. Ashraf, “Advanced silicon etching using high density plasma,” in Micromachining and Microfabrication Process Technology, K. W. Markus, ed., Proc. SPIE2639, 224–233 (1995).
    [CrossRef]
  12. J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
    [CrossRef]
  13. J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
    [CrossRef]
  14. S. Martinez, B. Courtois, “Insertion losses in micromachined free-space optical cross-connects due to fiber misalignments,” in Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois, J. M. Karam, S. P. Levifan, K. W. Markus, J. W. Walker, eds., Proc. SPIE4408, 289–300 (2001).
    [CrossRef]
  15. K. Y. Lee, W. J. Parzygnat, “Low-reflection, single-mode multifiber array connector (MAC),” in Proceedings of Electronic Components Conference (Bellcore, Piscataway, N. J., 1989), pp. 362–364.
    [CrossRef]
  16. S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979).
    [CrossRef]
  17. D. K. Mynbaev, L. L. Schneider, Fiber-Optic Communications Technology (Prentice-Hall, Englewood Cliffs, N.J., (2001), Chap. 6, p. 194.
  18. “Generic requirements for fiber optic attenuators,” GR-910-CORE, Bellcore, issue 2 (Bellcore, Piscataway, N.J., Dec.1998).

2003 (2)

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

1999 (1)

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

1998 (3)

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

1996 (1)

W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996).
[CrossRef]

1989 (1)

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

1979 (1)

S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979).
[CrossRef]

Andersen, B. M.

B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.

Ashraf, H.

J. Bhardwaj, H. Ashraf, “Advanced silicon etching using high density plasma,” in Micromachining and Microfabrication Process Technology, K. W. Markus, ed., Proc. SPIE2639, 224–233 (1995).
[CrossRef]

Askyuk, V.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Baek, J. T.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Barber, B.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Bhardwaj, J.

J. Bhardwaj, H. Ashraf, “Advanced silicon etching using high density plasma,” in Micromachining and Microfabrication Process Technology, K. W. Markus, ed., Proc. SPIE2639, 224–233 (1995).
[CrossRef]

Bishop, D.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Choi, C. A.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Courtois, B.

S. Martinez, B. Courtois, “Insertion losses in micromachined free-space optical cross-connects due to fiber misalignments,” in Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois, J. M. Karam, S. P. Levifan, K. W. Markus, J. W. Walker, eds., Proc. SPIE4408, 289–300 (2001).
[CrossRef]

de Rooij, N. F.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Dhuler, V.

R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.

Fairchild, S.

B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.

Ford, J. E.

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Dover, New York, 1989), Chap. 2.

Giles, C. R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Goossen, K. W.

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

Greywall, D. S.

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

Griss, P.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Hill, E.

R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.

Hong, Y. S.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

Howe, R. T.

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

Jang, W. I.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Juan, W. H.

W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996).
[CrossRef]

Jung, S. C.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Kim, Y. Y.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Kwon, H.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

Kwon, H. N.

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Lee, C. S.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Lee, H. K.

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Lee, J. H.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Lee, J.-H.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

Lee, K. Y.

K. Y. Lee, W. J. Parzygnat, “Low-reflection, single-mode multifiber array connector (MAC),” in Proceedings of Electronic Components Conference (Bellcore, Piscataway, N. J., 1989), pp. 362–364.
[CrossRef]

Lee, Y. I.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Liu, A. Q.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

Liu, Z. S.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

Lu, C.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

Makimoto, T.

S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979).
[CrossRef]

Martinez, S.

S. Martinez, B. Courtois, “Insertion losses in micromachined free-space optical cross-connects due to fiber misalignments,” in Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois, J. M. Karam, S. P. Levifan, K. W. Markus, J. W. Walker, eds., Proc. SPIE4408, 289–300 (2001).
[CrossRef]

Marxer, C.

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

Mynbaev, D. K.

D. K. Mynbaev, L. L. Schneider, Fiber-Optic Communications Technology (Prentice-Hall, Englewood Cliffs, N.J., (2001), Chap. 6, p. 194.

Nemoto, S.

S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979).
[CrossRef]

Nguyen, H.

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

Pang, S. W.

W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996).
[CrossRef]

Parzygnat, W. J.

K. Y. Lee, W. J. Parzygnat, “Low-reflection, single-mode multifiber array connector (MAC),” in Proceedings of Electronic Components Conference (Bellcore, Piscataway, N. J., 1989), pp. 362–364.
[CrossRef]

Ruel, R.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Schneider, L. L.

D. K. Mynbaev, L. L. Schneider, Fiber-Optic Communications Technology (Prentice-Hall, Englewood Cliffs, N.J., (2001), Chap. 6, p. 194.

Stulz, L.

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

Tang, W. C.

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

Thorsten, N.

B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.

Tu-Cuong,

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

Walker, J. A.

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

Wang, F.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

Wood, R.

R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.

Yoo, H. J.

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Yun, S. S.

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

Zhang, X. M.

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

IEEE Phonton. Technol. Lett. (1)

B. Barber, C. R. Giles, V. Askyuk, R. Ruel, L. Stulz, D. Bishop, “A fiber connectorized MEMS variable optical attenuator,” IEEE Phonton. Technol. Lett. 10, 1262–1264 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Marxer, P. Griss, N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11, 233–235 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. E. Ford, J. A. Walker, D. S. Greywall, K. W. Goossen, “Micromechanical fiber-optic attenuator with 3-μs response,” J. Lightwave Technol. 60, 1663–1670 (1998).
[CrossRef]

J. Micromech. Microeng. (1)

A. Q. Liu, X. M. Zhang, C. Lu, F. Wang, C. Lu, Z. S. Liu, “Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge,” J. Micromech. Microeng. 13, 400–411 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. H. Juan, S. W. Pang, “Controlling sidewall smoothness for micromachined Si mirrors and lenses,” J. Vac. Sci. Technol. B 14, 4080–4084 (1996).
[CrossRef]

Opt. Commun. (1)

J.-H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Opt. Commun. 221, 323–330 (2003).
[CrossRef]

Opt. Quantum Electron. (1)

S. Nemoto, T. Makimoto, “Analysis of splices loss in single-mode fibers using a Gaussian field approximation,” Opt. Quantum Electron. 11, 447–457 (1979).
[CrossRef]

Sens. Actuators A (1)

J. H. Lee, W. I. Jang, C. S. Lee, Y. I. Lee, C. A. Choi, J. T. Baek, H. J. Yoo, “Characterization of anhydrous HF gas-phase etching with CH3OH for sacrificial oxide removal,” Sens. Actuators A 64, 27–32 (1998).
[CrossRef]

Sens. Actuators. (1)

W. C. Tang, Tu-Cuong, H. Nguyen, R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sens. Actuators. 20, 25–32 (1989).
[CrossRef]

Other (9)

G. R. Fowles, Introduction to Modern Optics (Dover, New York, 1989), Chap. 2.

S. S. Yun, Y. Y. Kim, H. N. Kwon, J. H. Lee, H. K. Lee, S. C. Jung, “Optical characteristics of a micromachined VOA using successive partial transmission in a silicon optical leaker,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Lugano, Switzerland, 2002), pp. 51–52.

B. M. Andersen, S. Fairchild, N. Thorsten, “MEMS variable optical attenuator for optical amplifiers,” in Conference on Optical Fiber Communication, Vol. 2 of 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000) pp. 260–262.

R. Wood, V. Dhuler, E. Hill, “A MEMS variable optical attenuator,” in Conference on IEEE/LEOS Optical MEMS (IEEE, Hawaii, 2000), pp. 121–122.

J. Bhardwaj, H. Ashraf, “Advanced silicon etching using high density plasma,” in Micromachining and Microfabrication Process Technology, K. W. Markus, ed., Proc. SPIE2639, 224–233 (1995).
[CrossRef]

D. K. Mynbaev, L. L. Schneider, Fiber-Optic Communications Technology (Prentice-Hall, Englewood Cliffs, N.J., (2001), Chap. 6, p. 194.

“Generic requirements for fiber optic attenuators,” GR-910-CORE, Bellcore, issue 2 (Bellcore, Piscataway, N.J., Dec.1998).

S. Martinez, B. Courtois, “Insertion losses in micromachined free-space optical cross-connects due to fiber misalignments,” in Design, Test, Integration, and Packaging of MEMS/MOEMS 2001, B. Courtois, J. M. Karam, S. P. Levifan, K. W. Markus, J. W. Walker, eds., Proc. SPIE4408, 289–300 (2001).
[CrossRef]

K. Y. Lee, W. J. Parzygnat, “Low-reflection, single-mode multifiber array connector (MAC),” in Proceedings of Electronic Components Conference (Bellcore, Piscataway, N. J., 1989), pp. 362–364.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Plane-view schematic of a proposed refractive variable optical attenuator with partial transmission and refraction in an optical leaker aligned with two angled fibers.

Fig. 2
Fig. 2

Cross section of a micromachined variable optical attenuator. The optical leaker should be high enough to block the Gaussian beam distribution effectively.

Fig. 3
Fig. 3

Ray path in the refractive variable optical attenuator with a silicon optical wedge illustrating partial transmission and refraction.

Fig. 4
Fig. 4

Fabrication sequence of a micromachined variable optical attenuator: (a) SOI wafer, (b) PECVD oxide mask, pattern, (c) silicon DRIE, (d) thermal oxidation, (e) release and removal of the PECVD etch mask, (f) fiber alignment.

Fig. 5
Fig. 5

Microscopic image of the fabricated refractive variable optical attenuator: (a) overall view of the proposed VOA aligned with 8° angled optical fibers; (b) detailed view of the SOL.

Fig. 6
Fig. 6

Experimental setup comprising a laser vibrometer, tunable laser source, and optical power meter for measuring the mechanical and optical properties of the variable optical attenuator.

Fig. 7
Fig. 7

Comparison of the theoretical and experimental return loss of a refractive variable optical attenuator: solid curve, simulated values; I, experimental values (●, flat ended; ■, angled by 8°).

Fig. 8
Fig. 8

Simulated insertion loss with respect to the rotational angle error of the optical fibers.

Fig. 9
Fig. 9

Attenuation characteristics of the refractive variable optical attenuator. Experimental and theoretical curves are shown with respect to the height of the optical leaker.

Fig. 10
Fig. 10

Comparison of theoretical and experimental PDL of a refractive variable optical attenuator with respect to the attenuation level: dotted curve, theoretical PDL when the first wedge angle and sidewall roughness are 23° and 35 nm, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

PscatterPtotal=1-exp-4πσ cosθiλ2,
wz=w01+λzπw0221/2,
Ss=ktS12tS22,
Sp=ktP12tP22,
PDL= 10 log10T+SsT+Sp,
T=10-A/10.

Metrics