Abstract

Woodpile photonic crystals are derived from a diamond lattice by modification of the unit cell according to layer-by-layer fabrication convenience. The fabrication may be simplified even more if the overlap between adjacent layers is allowed. Here we describe the fabrication of such an overlapped-woodpile crystal. Its optical characteristics are studied numerically, and the existence of a photonic bandgap for specific parameters is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localisation of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
    [Crossref]
  4. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
    [Crossref]
  5. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
    [Crossref]
  6. C. M. Soukoulis, Photonic Band Gap Materials( Kluwer Academic, New York1995), p. E350.
  7. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [Crossref]
  8. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
    [Crossref]
  9. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).
  10. A. Chutinan, S. Noda, “Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal,” J. Opt. Soc. Am. B 16, 240–244 (1999).
    [Crossref]
  11. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
    [Crossref]

2000 (1)

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

1999 (1)

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

1996 (1)

T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

1995 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[Crossref]

1994 (2)

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localisation of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Arsh, A.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

Blur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Brand, S.

T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

Chutinan, A.

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[Crossref]

Feigel, A.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[Crossref]

John, S.

S. John, “Strong localisation of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Klebanov, M.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Kotler, Z.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Lyubin, V.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Michel, E.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Noda, S.

Ozbay, E.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Sfez, B.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Sigalas, M.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

C. M. Soukoulis, Photonic Band Gap Materials( Kluwer Academic, New York1995), p. E350.

Tuttle, G.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Appl. Phys. Lett. (2)

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, K. M. Ho, “Micromachined millimeter-wave photonic band-gap crystals,” Appl. Phys. Lett. 64, 2059–2061 (1994).
[Crossref]

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Chalcogenide glass-based three-dimensional photonic crystals,” Appl. Phys. Lett. 77, 3221–3223 (2000).
[Crossref]

J. Appl. Phys. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Blur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localisation of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, “Photonic band-gaps in 3-dimensions—new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994)
[Crossref]

Other (2)

C. M. Soukoulis, Photonic Band Gap Materials( Kluwer Academic, New York1995), p. E350.

A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, V. Lyubin, “Three dimensional simple cubic woodpile photonic crystal made from chalcogenide glasses,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layer-by-layer fabrication of an overlapped-woodpile photonic crystal. The level of planarization is shown in each step. Each layer adopts the topography of the previous layer; however, starting from the second layer the topographies are the same (up to rotation and shift).

Fig. 2
Fig. 2

Unit cell structure of the OWPC. Additional parameter Δ describes the overlap between adjacent layers.

Fig. 3
Fig. 3

Gap-to-midgap frequency ratio for an ordinary woodpile photonic crystal. Refractive index n = 3 and Δ = 0 were used. The maximum value ρ ≈ 0.14 is achieved for each layer width h/ p ≈ 0.4 and duty cycle d/ p ≈ 0.3.

Fig. 4
Fig. 4

Gap-to-midgap frequency ratio for n = 3 and Δ = 0.1 OWPC. The optimal parameters are h/ p ≈ 0.52 and duty cycle d/ p ≈ 0.25; however, for d/ p ≈ 0.5 the gap still exists.

Metrics