Abstract

High-performance fluidic lenses with an adjustable focal length spanning a very wide range (30 mm to infinite) are demonstrated. We show that the focal length, F-number, and numerical aperture can be dynamically controlled by changing the shape of the fluidic adaptive lens without moving the lens position mechanically. The shortest focal length demonstrated is less than 30 mm for a 20-mm lens aperture. The fluidic adaptive lens has a nearly perfect spherical profile and shows a resolution better than 40 line pairs/mm in a plano-convex structure and 57 line pairs/mm in a biconvex structure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, ed. Smart Imaging Systems, Vol. 91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001).
  2. R. K. Tyson, ed. Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000).
  3. A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org .
    [CrossRef]
  4. T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
    [CrossRef]
  5. G. Vdovin, “Quick focusing of imaging optics using micromachined adaptive mirrors,” Opt. Commun. 140, 187–190 (1997).
    [CrossRef]
  6. B. M. Wright, “Improvements in or relating to variable focus lenses,” English patent1,209,234 (11March, 1968).
  7. G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
    [CrossRef]
  8. N. Sugiura, S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993).
    [CrossRef] [PubMed]
  9. A. H. Rawicz, I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996).
    [CrossRef] [PubMed]
  10. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
    [CrossRef]
  11. D. Y. Zhang, Y. H. Lo, “Focal length tunable fluidic adaptive lens,” presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Md., 1–6 June 2003.
  12. Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
    [CrossRef]
  13. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
    [CrossRef]

2003 (1)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

2001 (1)

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

2000 (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

1999 (1)

A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org .
[CrossRef]

1998 (1)

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

1997 (1)

G. Vdovin, “Quick focusing of imaging optics using micromachined adaptive mirrors,” Opt. Commun. 140, 187–190 (1997).
[CrossRef]

1996 (1)

1993 (1)

1970 (1)

G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
[CrossRef]

Barnes, T. H.

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

Bellin, J. L. S.

G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Haskell, T. G.

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

Knollman, G. C.

G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
[CrossRef]

Lien, V.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

Lo, Y. H.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

D. Y. Zhang, Y. H. Lo, “Focal length tunable fluidic adaptive lens,” presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Md., 1–6 June 2003.

Love, G. D.

A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org .
[CrossRef]

Mikhailenko, I.

Morita, S.

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

Naumov, A. F.

A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org .
[CrossRef]

Rawicz, A. H.

Shirai, T.

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

Sugiura, N.

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

Vdovin, G.

G. Vdovin, “Quick focusing of imaging optics using micromachined adaptive mirrors,” Opt. Commun. 140, 187–190 (1997).
[CrossRef]

Weaver, J. L.

G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
[CrossRef]

Whitesides, G. M.

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Wright, B. M.

B. M. Wright, “Improvements in or relating to variable focus lenses,” English patent1,209,234 (11March, 1968).

Xia, Y.

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

D. Y. Zhang, Y. H. Lo, “Focal length tunable fluidic adaptive lens,” presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Md., 1–6 June 2003.

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. C. Knollman, J. L. S. Bellin, J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1970).
[CrossRef]

J. Microelectromech. Syst. (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elsatomer,” J. Microelectromech. Syst. 9, 76–81 (2000).
[CrossRef]

Opt. Commun. (2)

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

G. Vdovin, “Quick focusing of imaging optics using micromachined adaptive mirrors,” Opt. Commun. 140, 187–190 (1997).
[CrossRef]

Opt. Exp. (1)

A. F. Naumov, G. D. Love, “Control optimization of spherical modal liquid crystal lenses,” Opt. Exp. 4, 344–352 (1999), http://www.opticsexpress.org .
[CrossRef]

Other (4)

D. Y. Zhang, Y. H. Lo, “Focal length tunable fluidic adaptive lens,” presented at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, Md., 1–6 June 2003.

B. M. Wright, “Improvements in or relating to variable focus lenses,” English patent1,209,234 (11March, 1968).

B. Javidi, ed. Smart Imaging Systems, Vol. 91 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 2001).

R. K. Tyson, ed. Adaptive Optics Engineering Handbook (Marcel Dekker, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of the fluidic system for pressure control.

Fig. 2
Fig. 2

Dependence of focal length on fluidic pressure in plano-convex fluidic adaptive lenses.

Fig. 3
Fig. 3

Focal-length tunability with fluidic pressure in plano-convex and biconvex fluidic adaptive lenses with a PDMS membrane thickness of 60 μm.

Fig. 4
Fig. 4

Dependence of F-number on fluidic pressure in plano-convex fluidic adaptive lenses.

Fig. 5
Fig. 5

Dependence of F-number on fluidic pressure in plano-convex and biconvex fluidic adaptive lenses with a 60-μm membrane.

Fig. 6
Fig. 6

Dependence of the NA on fluidic pressure in plano-convex fluidic adaptive lenses.

Fig. 7
Fig. 7

Dependence of the NA on fluidic pressure in plano-convex and biconvex fluidic adaptive lenses.

Fig. 8
Fig. 8

Resolution versus focal length for plano-convex fluidic adaptive lenses measured with a positive U.S. Air Force test pattern.

Fig. 9
Fig. 9

Resolution versus fluidic pressure measured with a negative U.S. Air Force test pattern in plano-convex and biconvex fluidic adaptive lenses with a 60-μm membrane.

Fig. 10
Fig. 10

Picture of resolution measurement with a negative U.S. Air Force standard on a fluidic adaptive lens at a 43-mm focal length.

Fig. 11
Fig. 11

Photographs for image distortion measurement on a 60-μm membrane adaptive lens at (a) 51-, (b) 43-, (c) 34-mm focal lengths. The dot diameter is 1.00 mm and the dot center-to-center spacing is 2.00 mm in the grid distortion target.

Tables (1)

Tables Icon

Table 1 Profile of the Fluidic Adaptive Lens with a 30-μm Membrane

Metrics