Abstract

A compact and low-cost device for monitoring the peak wavelength of single-peak spectral distributions is presented. The system is based on the transmission properties of a fiber Bragg grating when its period is modulated. Different types of optical signal, such as the emission of distributed-feedback lasers and the reflection of a broadband optical source produced by fiber gratings used in sensor systems, can be measured with this device. We demonstrate that a high wavelength resolution of ∼1 pm can be achieved and that our proposal can be used for real-time monitoring.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  2. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
    [CrossRef]
  3. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
    [CrossRef]
  4. Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, A. E. Willner, “Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,” J. Lightwave Technol. 20, 2239–2246 (2002).
    [CrossRef]
  5. A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
    [CrossRef]
  6. R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.
  7. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–317 (1996).
    [CrossRef]
  8. A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
    [CrossRef] [PubMed]
  9. L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
    [CrossRef]
  10. J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
    [CrossRef]
  11. A. Arie, B. Lissak, M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849–1855 (1999).
    [CrossRef]
  12. L. A. Ferreira, E. V. Diatzikis, J. L. Santos, F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
    [CrossRef]
  13. C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
    [CrossRef]
  14. S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
    [CrossRef]
  15. J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).
  16. S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
    [CrossRef]

2003 (3)

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
[CrossRef]

2002 (3)

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Z. Pan, Y. W. Song, C. Yu, Y. Wang, Q. Yu, J. Popelek, H. Li, Y. Li, A. E. Willner, “Tunable chromatic dispersion compensation in 40-Gb/s systems using nonlinearly chirped fiber Bragg gratings,” J. Lightwave Technol. 20, 2239–2246 (2002).
[CrossRef]

2000 (1)

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (4)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[CrossRef] [PubMed]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

1996 (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–317 (1996).
[CrossRef]

Abad, S.

Alavie, A. T.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Allison, S. G.

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

Andrés, M. V.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).

Araújo, F. M.

S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
[CrossRef]

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

Arie, A.

Bae, J.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Bae, J. K.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Chan, C. C.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Childers, B. A.

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

Coroy, T.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Cruz, J. L.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).

Delgado-Pinar, M.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

Diatzikis, E. V.

Díez, A.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

Duchowicz, R.

J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Farahi, F.

L. A. Ferreira, E. V. Diatzikis, J. L. Santos, F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

Ferreira, L. A.

S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
[CrossRef]

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

L. A. Ferreira, E. V. Diatzikis, J. L. Santos, F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[CrossRef] [PubMed]

Fox, R. L.

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

Frogatt, M. E.

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

Gong, J. M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Huang, S.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Jackson, D. A.

Jeong, J.-M.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Jin, W.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Karr, S.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Kersey, A. D.

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–317 (1996).
[CrossRef]

Kim, J. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Kim, S. H.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Lee, R.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Lee, S. B.

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

Li, H.

Li, Y.

Liao, Y. B.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Lissak, B.

Lobo Ribeiro, A. B.

López-Amo, M.

López-Higuera, J. M.

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

Maaskant, R.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

MacAlpine, J. M. K.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Measures, R. M.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Misas, C. J.

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

Mora, J.

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).

Ohn, M.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Pan, Z.

Popelek, J.

Santos, J. L.

S. Abad, F. M. Araújo, L. A. Ferreira, J. L. Santos, M. López-Amo, “Interrogation of wavelength multiplexed fiber Bragg gratings using spectral filtering and amplitude-to-phase optical conversion,” J. Lightwave Technol. 21, 127–131 (2003).
[CrossRef]

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

L. A. Ferreira, E. V. Diatzikis, J. L. Santos, F. Farahi, “Frequency-modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620–1630 (1998).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, J. L. Santos, D. A. Jackson, “Analysis of the reflective-matched fiber Bragg grating sensing interrogation scheme,” Appl. Opt. 36, 934–939 (1997).
[CrossRef] [PubMed]

Song, Y. W.

Tur, M.

Wang, Y.

Willner, A. E.

Yu, C.

Yu, Q.

Zhang, M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Misas, F. M. Araújo, L. A. Ferreira, J. L. Santos, J. M. López-Higuera, “Fiber Bragg sensors interrogation based on carrier generation by modulating the coupling length of a wavelength-division multiplexer,” IEEE J. Sel. Top. Quantum Electron. 6, 750–755 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. Díez, M. Delgado-Pinar, J. Mora, J. L. Cruz, M. V. Andrés, “Dynamic fiber-optic add–drop multiplexer using Bragg gratings and acousto-optic-induced coupling,” IEEE Photon. Technol. Lett. 15, 84–86 (2003).
[CrossRef]

L. A. Ferreira, J. L. Santos, F. Farahi, “Pseudoheterodyne demodulation technique for fiber Bragg gratings sensors using two matched gratings,” IEEE Photon. Technol. Lett. 9, 487–489 (1997).
[CrossRef]

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, Y. B. Liao, “PA novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee, J.-M. Jeong, “Spectral shape tunable band-rejection filter using a long-period fiber grating divided coil heaters,” IEEE Photon. Technol. Lett. 15, 407–409 (2003).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Eng. (1)

S. G. Allison, R. L. Fox, M. E. Frogatt, B. A. Childers, “Novel piezoelectric actuators for tuning an optical fiber Bragg grating,” Opt. Eng. 41, 2448–2455 (2002).
[CrossRef]

Opt. Fiber Technol. (1)

A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–317 (1996).
[CrossRef]

Other (2)

J. Mora, R. Duchowicz, J. L. Cruz, M. V. Andrés, “Simple fiber optic device to interrogate fiber optic Bragg gratings used as sensors,” in 4th Iberoamerican Meeting on Optics, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 346–349 (2001).

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, R. Lee, S. Karr, T. Coroy, S. Huang, “Bragg grating laser sensing systems for smart structures,” in Proceedings of IEEE Conference on Laser and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 137–138.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup with three optical sources: (a) a TL, (b) a DFB laser, and (c) a broadband source (BBS) sliced by FBG2, where C is an optical circulator, FBG1 is a FBG attached to a PZT, and PD is a photodetector whose output is recorded by a digital oscilloscope. (d) Diagram showing some details of the PZT with FBG1 glued onto the lateral surface.

Fig. 2
Fig. 2

Signals recorded in a digital oscilloscope: V AC is the voltage applied to the PZT (560 V and 50 Hz), and V PD is the voltage provided by the photodetector, which corresponds to a laser power of 0.20 mW and a wavelength of 1553.070 nm.

Fig. 3
Fig. 3

Calibration curve: time difference between consecutive minima Δt pp and the laser wavelength. Points, experiment; solid curve, theory.

Fig. 4
Fig. 4

Dependence of the time difference between consecutive minima, Δt pp, on the laser power. Inset, several superimposed normalized signals for two values of the laser power, 0.2 and 2 mW, at a constant nominal wavelength of 1553.070 nm.

Fig. 5
Fig. 5

Wavelength dependence of the DFB laser emission on its output power, measured with our monitoring device. We have plotted both Δt pp and the corresponding wavelength versus the optical power of the DFB laser.

Fig. 6
Fig. 6

Three photodetector signals recorded in a digital oscilloscope obtained by use of the configuration of Fig. 1(c). Each curve corresponds to a different strain of FBG2.

Fig. 7
Fig. 7

Calibration of the strain sensor defined by FBG2 and our measuring device. Inset, deviations between our measurements and the results obtained with a conventional OSA, D = δλPZT - δλOSA, versus the strain.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T1λ=1-R1 exp-λ-λ1tδλ12,
S2λ=S2p exp-λ-λ2δλ22,
λ1t=λ0+ΔλPZT2cosωt,
Vt= P21-R1δλ1δλ12+δλ221/2×exp-λ2-λ1t2δλ12+δλ22,
Δtpp=t2-t1=T-2t=T1-1πarccos2 λ1t-λ0ΔλPZT.
Smax=Δtppλ1=2πTΔλPZT=32.5 μs/pm.

Metrics